Inorganic Chemistry

Submitted by Anthony L. Fernandez / Merrimack College on Wed, 05/22/2019 - 10:42
Description

This course introduces the chemistry of transition metals and main group elements. Topics include theories of bonding, kinetics and mechanisms of reactions of transition metal complexes, oxidation-reduction reactions, hard-soft acid-base theory, and solid-state chemistry. Applications of inorganic chemistry to other areas (organic, analytical, and physical chemistry, as well as biology and biochemistry) are highlighted throughout the course. The laboratory portion of the course involves the synthesis and spectroscopic investigation of inorganic complexes.

CompChem 06: Electron Densities, Electrostatic Potentials, and Reactivity Indices

Submitted by Joanne Stewart / Hope College on Wed, 05/22/2019 - 09:38
Description

This is the sixth in a series of exercises used to teach computational chemistry. It has been adapted, with permission, from a Shodor CCCE exercise (http://www.computationalscience.org/ccce). It uses the WebMO interface for drawing structures and visualizing results. WebMO is a free web-based interface to computational chemistry packages (www.webmo.net).

Organometallics

Submitted by Brian Anderson / Keene State College on Tue, 05/21/2019 - 12:37
Description

This course introduces the organometallic chemistry of the transition metals and main group elements with emphasis on common structural features and basic reaction types. The role of organometallic complexes in catalysis is also explored.

 

Inorganic Chemistry

Submitted by Brian Anderson / Keene State College on Tue, 05/21/2019 - 12:26
Description

An introduction to modern inorganic chemistry, including a description of transition- metal complexes and their role as catalysts, and a survey of the reactivity of selected elements of the main group. Three-hour lecture, three-hour laboratory

 

CompChem 04: Single Point Energies and Geometry Optimizations

Submitted by Joanne Stewart / Hope College on Tue, 05/21/2019 - 10:19
Description

This is the fourth in a series of exercises used to teach computational chemistry. It has been adapted, with permission, from a Shodor CCCE exercise (http://www.computationalscience.org/ccce). It uses the WebMO interface for drawing structures and visualizing results. WebMO is a free web-based interface to computational chemistry packages (www.webmo.net).

CompChem 03: Choice of Theoretical Method

Submitted by Joanne Stewart / Hope College on Mon, 05/20/2019 - 10:54
Description

This is the third in a series of exercises used to teach computational chemistry. It has been adapted, with permission, from a Shodor CCCE exercise (http://www.computationalscience.org/ccce). It uses the WebMO interface for drawing structures and visualizing results. WebMO is a free web-based interface to computational chemistry packages (www.webmo.net).

In the exercise, students compare the computational results (structures and energies) for different theoretical methods and basis sets.

Inorganic Chemistry

Submitted by Gary Guillet / Furman University on Thu, 04/25/2019 - 16:02
Description

Introduces students to a broad overview of modern inorganic chemistry. Included are considerations of molecular symmetry and group theory, bonding and molecular orbital theory, structures and reactivities of coordination compounds, organometallic chemistry, catalysis and transition metal clusters. Laboratory experiences will include the measurement of several important features of coordination compounds, such as their electronic spectra and paramagnetism, as well as the synthesis and characterization of organometallic compounds.

Redox-switch polymerization catalysis

Submitted by Chip Nataro / Lafayette College on Tue, 03/26/2019 - 13:49
Description

This is the full literature discussion based on a communicaiton (J. Am. Chem. Soc. 2011133, 9278). This paper describes a redox-switch yttrium catalyst that is an active catalyst for the polymerization of L-lactide in the reduced form and inactive in the oxidized form. The catalyst contains a ferrocene-based ligand that serves as the redox active site in the catalyst. This full literature discussion is an extension of the one figure literature discussion that is listed below.