Inorganic Chemistry I
Surveys classical and contemporary approaches to the study of coordination compounds, solid-state chemistry and the chemistry of elements based on groups in the periodic table.
Surveys classical and contemporary approaches to the study of coordination compounds, solid-state chemistry and the chemistry of elements based on groups in the periodic table.
An introduction to the chemistry of inorganic compounds and materials. Descriptive chemistry of the elements. A survey of Crystal Field Theory, band theory, and various acid-base theories. Use of the chemical and scientific literature. Introduction to the seminar concept.
During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
This Literature Discussion is based on the article “Square-planar Co(III) {O4} coordination: large ZFS and reactivity with ROS” by Linda Doerrer et. al.
This course is a survey of the chemistry of the inorganic elements focusing on the relationship between electronic structure, physical properties, and reactivity across the periodic table. Topics to be covered include: atomic structure, chemical bonding, group theory, spectroscopy, crystal field theory, coordination chemistry, organometallic chemistry and catalysis, and bioinorganic chemistry. Prerequisites: Successful completion of CH120, CH121, (with a C- or better) and CH 301 (suggested)
Course Description: An overview course covering the fundamental principles and theories of inorganic chemistry, with emphasis on the chemistry of d-block elements. Included topics are molecular structure, electronic structure and spectra, bonding descriptions and reaction mechanisms of coordination complexes along with an introduction to organometallic compounds of d-block elements and an introduction to molecular symmetry and point groups.
This course covers fundamentals of central topics in inorganic chemistry from historical to modern-day perspectives. Topics include: coordination compounds (history, structure, bonding theories, reactivity, applications); solid state chemistry (crystals, lattices, radius ratio rule, defect structures, silicates & other minerals); and descriptive chemistry of the elements.
This lecture course will introduce students to the interdependence of chemical bonding, spectroscopic characteristics, and reactivity properties of coordination compounds and complexes using the fundamental concept of symmetry. After reviewing atomic structure, the chemical bond, and molecular structure, the principles of coordination chemistry will be introduced. A basic familiarity with symmetry will be formalized by an introduction to the elements of symmetry and group theory. The students will use symmetry and group theory approaches to understand central atom hybridization, ligand
This is the fifth in a series of exercises used to teach computational chemistry. It has been adapted, with permission, from a Shodor CCCE exercise (http://www.computationalscience.org/ccce). It uses the WebMO interface for drawing structures and visualizing results. WebMO is a free web-based interface to computational chemistry packages (www.webmo.net).