What happened to my green solution?

Submitted by Anthony L. Fernandez / Merrimack College on Wed, 01/10/2018 - 16:29
Description

Students in inorganic chemistry courses are often interested in the colors of transition metal complexes. This in-class activity serves an introduction to reactions of coordination complexes and pushes students to think about the relationship between the color of a complex cation and its structure. Students are provided with pictures of aqueous solutions of two chromium(III) salts [CrCl3*6 H2O and Cr(NO3)3*9 H2O] at two different times and are then asked to explain the changes observed in the solutions.

Inorganic Chemistry

Submitted by Lori Watson / Earlham College on Thu, 01/04/2018 - 11:27
Description

Inorganic chemists study the entire periodic table (even carbon—as long as it’s bound to a metal!) and are interested in the structure and reactivity of a wide variety of complexes.  We will spend the first third of the course learning some “tools” and then will apply them to a variety of current topics in inorganic chemistry (bioinorganic chemistry, solid state materials, catalysis, nuclear chemistry, and more!).

Inclusive Pedagogy: A Misidentified Molecule and Paper Retraction

Submitted by Sibrina Collins / Lawrence Technological University on Sun, 09/10/2017 - 19:20
Description

This learning object focuses on teaching students how to read and use Chemical and Engineering News for class discussions and critically evaluate the scientific literature. Recently, Chemical and Engineering News published an article about the retraction of a 15-year old paper, which had misidentified a multidentate ligand, which is central to the paper (Ritter, S.K. “Chemist Retract 15-year old paper and publish a revised version.” Chem. Eng. News, 2017, 95, (36), p6).

Chapter 13--Stanley Organometallics

Submitted by George Stanley / Louisiana State University on Mon, 08/14/2017 - 12:51
Description

Chapter 13 from George Stanley's organometallics course, Migratory Insertion and Elimination

 

this chapter covers migratory insertion and elimination reactions.

The powerpoint slides contain answers to some of the in-class exercises, so those are behind the "faculty only" wall. I share these with students after the class, but not before.

Everyone is more than welcome to edit the materials to suit their own uses, and I would appreciate being notified of any mistakes that are found.


Chapter 12--Stanley Organometallics

Submitted by George Stanley / Louisiana State University on Mon, 08/14/2017 - 12:45
Description

Chapter 12 from George Stanley's organometallics course, Oxidative Addition and Reductive Elimination

 

this chapter covers oxidative addition and reductive elimination reactions.

The powerpoint slides contain answers to some of the in-class exercises, so those are behind the "faculty only" wall. I share these with students after the class, but not before.

Everyone is more than welcome to edit the materials to suit their own uses, and I would appreciate being notified of any mistakes that are found.


Chapter 10--Stanley Organometallics

Submitted by George Stanley / Louisiana State University on Mon, 08/14/2017 - 12:32
Description

Chapter 10 from George Stanley's organometallics course, M-M bonding

 

this chapter covers bonding and structure of metal-metal bonds and some descriptive chemistry.

The powerpoint slides contain answers to some of the in-class exercises, so those are behind the "faculty only" wall. I share these with students after the class, but not before.

Everyone is more than welcome to edit the materials to suit their own uses, and I would appreciate being notified of any mistakes that are found.


Chapter 9--Stanley Organometallics

Submitted by George Stanley / Louisiana State University on Mon, 08/14/2017 - 12:23
Description

Chapter 9 from George Stanley's organometallics course, Cp

 

this chapter covers bonding and structure of metal pi-bonds, some descriptive chemistry and some historical context of sandwich compounds..

The powerpoint slides contain answers to some of the in-class exercises, so those are behind the "faculty only" wall. I share these with students after the class, but not before.

Everyone is more than welcome to edit the materials to suit their own uses, and I would appreciate being notified of any mistakes that are found.


Chapter 8--Stanley Organometallics

Submitted by George Stanley / Louisiana State University on Mon, 08/14/2017 - 12:15
Description

Chapter 8 from George Stanley's organometallics course, Arenes

 

this chapter covers bonding and structure of metal pi-bonds and some descriptive chemistry.

The powerpoint slides contain answers to some of the in-class exercises, so those are behind the "faculty only" wall. I share these with students after the class, but not before.

Everyone is more than welcome to edit the materials to suit their own uses, and I would appreciate being notified of any mistakes that are found.


Investigating the toxicities of metals and identifying cadmium centers in metallothioneins

Submitted by Chantal Stieber / Cal Poly Pomona on Sat, 06/03/2017 - 14:43
Description

This activity was designed as an in-class group activity, in which students begin by using basic principles to predict relative toxicities and roles of metals in biological systems. Students then learn about the structures of metallothioneins using information from the protein data bank (PDB) and 113Cd NMR data. By the end of the activity, students will have analyzed data to identify and determine bonding models and coordination sites for multiple cadmium centers in metallothioneins. It is based on recent literature, but does not require students to have read the papers before class.

Introduction to Agostic Interactions

Submitted by Emma Downs / Fitchburg State University on Sat, 06/03/2017 - 11:59
Description

A brief introduction to agostic interactions and their importance to common organometallic mechanisms such as beta-hydride elimination. Examples of compounds containing these interactions are discussed and compared to familiar molecules such as diborane. Ways to characterize these interactions are also introduced.

Slides are based on the PNAS review Agostic Interactions in Transition Metal Compounds 

Brookheart, Green, and Parkin Proc. Natl. Acad.Sci. 2007104(7), 6908-6914