Using IR Frequencies to Compare Bond Strengths via Harmonic Oscillator Model
Inorganic chemists often use IR spectroscopy to evaluate bond order of ligands, and as a means of determining the electronic properties of metal fragments.
Inorganic chemists often use IR spectroscopy to evaluate bond order of ligands, and as a means of determining the electronic properties of metal fragments.
In honor of Professor Richard Andersen’s 75th birthday, a small group of IONiC leaders submitted a paper to a special issue of
Pulsed Gradient Spin Echo (PGSE) DOSY is a NMR technique used for determining the hydrodynamic radius of a molecule in solution by measuring the rate of diffusion. This technique requires a standard, usually tetrakis(trimethylsilyl)silane (TMSS). This activity will cover the basics of how PGSE works and includes built in animations to demonstrate how the nuclear magnetization is affected. Each slide has comments explaining the content for the user's convenience.
Fundamental principles of inorganic chemistry, including: states of matter; modern atomic and bonding theory; mass and energy relationships in chemical reactions; equilibria; acids and bases; descriptive inorganic chemistry; solid state structure; and electrochemistry. Periodic properties of the elements and their compounds are discussed (3 hours lecture, 1 hour recitation).
Modern theories of atomic structure and chemical bonding and their applocations to molecular and metallic structures and coordination chemistry.
Students are confronted with a number of new types of isomerism as they move from organic chemistry into inorganic chemistry. This can be confusing and students often have trouble visualizing structures and differentiating between isomers. In this exercise, students are asked to examine a number of different crystal structures from the Teaching Subset (distributed with Mercury version 3.10, early 2018) of the Cambridge Structural Database.
This exercise looks at the metal complexes of tropocoronand ligands, which were first studied by Nakanishi, Lippard, and coworkers in the 1980s. The size of the metal binding cavity in these macrocyclic ligands can be varied by changing the number of atoms in the linker chains between the aminotroponeimine rings, similar to crown ethers. These tetradentate ligands bind a number of +2 metal centers (Cd, Co, Cu, Ni, and Zn) and the geometry of the donor atoms around the metal center changes with the number of atoms in the linker chains.
This course uses molecular orbital theory to explain the electronic structure and reactivity of inorganic complexes. Topics include symmetry and its applications to bonding and spectroscopy, electronic spectroscopy of transition-metal complexes, mechanisms of substitution and redox processes, organometallic and multinuclear NMR.
Additional notes
I do not require a formal text but George Stanley's organometallic chemistry 'book' on VIPEr is made available to students (the link is found below).
Introduces the theories of atomic structure and bonding in main-group and solid-state compounds. Common techniques for characterizing inorganic compounds such as NMR, IR, and mass spectrometry are discussed. Descriptive chemistry of main group elements is examined. Conductivity, magnetism, superconductivity, and an introduction to bioinorganic chemistry are additional topics in the course. In lieu of the laboratory, students have a project on a topic of their choice. Serves as an advanced chemistry elective for biochemistry majors.