Inorganic Chemistry
This course is composed of two components:
A. Lecture:
This course is composed of two components:
A. Lecture:
This course is an introduction to the field of inorganic chemistry. The student is expected to be well-versed in the material covered in general chemistry, as this will serve as the foundation and launching point for the material to be covered this semester. The course will begin by examining the properties of the elements, and expand outward to consider chemical bonding and the electronic factors that govern metal reactivity. These factors include acid-base theory, thermodynamics, electrochemistry and redox, and coordination chemistry.
This Guided Literature Discussion was assigned as a course project, and is the result of work originated by students Joie Games and Benjamin Melzer. It is based on the article “Next-Generation Water-Soluble Homogeneous Catalysts for Conversion of Glycerol to Lactic Acid” by Matthew Finn, J. August Ridenour, Jacob Heltzel, Christopher Cahill, and Adelina Voutchkova-Kostal in Organometallics 2018 37 (9), 1400-1409.
This Guided Literature Discussion was assigned as a course project, and is the result of work originated by students Christopher Lasterand Patrick Wilson. It is based on the article “Deca-Arylsamarocene: An Unusually Inert Sm(II) Sandwich Complex” by Niels J. C.
A study of the chemistry of inorganic compounds, including the principles of covalent and ionic bonding, symmetry, periodic properties, metallic bonding, acid-base theories, coordination chemistry, inorganic reaction mechanisms, and selected topics in descriptive inorganic chemistry. Laboratory work is required.
This Guided Literature Discussion was assigned as a course project, and is the result of work originated by students Jana Forster and Kristofer Reiser. It is based on the article “Mechanism of the Platinum(II)-Catalyzed Hydroamination of 4-Pentenylamines” by Christopher F. Bender, Timothy J. Brown, and Ross A. Widenhoefer in Organometallics 2016 35 (2), 113-125.
This course is designed to give an introduction to the concepts of electronic structure, bonding,
and reactivity in inorganic chemistry. The field is too vast to comprehensively cover every aspect in
a single semester, so this class will offer a qualitative overview of inorganic chemistry. Reading and
understanding scientific literature is an important skill for any scientist to have, whether you move
on to grad school, professional school, or the job market, so relevant literature articles will be
What is a foundations inorganic course? Here is a great description
The application of physio-chemical principles to understanding structure and reactivity in main group and transition elements. Valence Bond, Crystal Field, VSEPR, and LCAO-MO will be applied to describe the bonding in coordination compounds. Organometallic and bio-inorganic chemistry will be treated, as will boranes, cluster and ring systems, and inorganic polymers. The laboratory will involve both synthetic and analytic techniques and interpretation of results.
An overview of descriptive main group chemistry, solid state structures and the energetics of ionic, metallic, and covalent solids, acid-base chemistry and the coordination chemistry of the transition metals. The course is intended to explore and describe the role of inorganic chemistry in other natural sciences with an emphasis on the biological and geological sciences. Important compounds and reactions in industrial chemistry are also covered. Intended for both chemistry and non-chemistry majors.