Job's Method - The Covid-19 Version

Submitted by Chip Nataro / Lafayette College on Thu, 03/19/2020 - 23:03
Description

This is the classic Job's Method experiment from "Synthesis and Technique in Inorganic Chemistry" 2nd Ed. (1977 or 1986 pp 108-114) by R. J. Angelici. There are slight changes from the experiment published in the book but they just include running solutions with ethylenediamine mole fractions of 0.67 and 0.75, so details will not be provided. What is provided are a series of pictures and videos showing the experiment being performed. Also included are the raw files of the absorbance spectra in EXCEL.

Ionic Liquids in Action

Submitted by Brad Wile / Ohio Northern University on Thu, 03/05/2020 - 11:46
Description

This was a short LO developed to give the students some context for ionic liquids in use. Since this paper is from a chemical engineering perspective, it supported a goal of having the students think about chemistry outside of the typical inorganic journal/research boundaries. This LO was implemented after a discussion of HSAB/ECW, frustrated Lewis pairs, non-aqueous media, and superacids. No explicit discussion of catalysis prior to this class discussion. 

Advanced Inorganic Chemistry

Submitted by Terrie Salupo-Bryant / Manchester University on Fri, 01/31/2020 - 16:02
Description

Many of the topics in this course have their origins in the topics that are covered in General Chemistry but are covered in more detail.  Many of the rules learned in General Chemistry are actually the exception.  Chemical systems are much more complicated than the simple models presented in a first year course.  The course begins with the electronic structure and periodic properties of atoms followed by discussion of covalent, ionic, and metallic bonding theories and structures.  Students also apply acid-base principles to inorganic systems.  The second half of the course is dedicated to t

Inorganic Chemistry 2020

Submitted by Adam Johnson / Harvey Mudd College on Tue, 01/21/2020 - 17:35
Description

Inorganic chemistry interfaces and overlaps with the other areas of chemistry. Inorganic chemists  synthesize molecules of academic and commercial interest, measure properties such as magnetism and unpaired electron spin with sophisticated instruments, study metal ion uptake in living cells, and prepare new materials like photovoltaics. Inorganic chemistry is a diverse field, and we will only be able to touch on some of the chemistry of the 118 elements that currently reside in the periodic table.

Fourier Transform IR Spectroscopy of Tetrahedral Borate Ions

Submitted by Zachary Tonzetich / University of Texas at San Antonio on Wed, 10/09/2019 - 11:02
Description

This experiment was developed for an upper division Instrumental Analysis course to give students additional experience with infrared (IR) spectroscopy beyond the routine functional group identification encountered in undergraduate Organic Chemistry courses. It shares some aspects with the analysis of gas phase rovibrational spectra typically performed in Physical Chemistry courses, but places a greater emphasis on more practical considerations including data acquisition (using ATR) and interpretation.

Inorganic Chemistry

Submitted by Caroline Saouma / Virginia Tech on Sun, 06/09/2019 - 14:52
Description

From syllabus:

An improved method for drawing the bonding MO for dihydrogen

Submitted by Adam Johnson / Harvey Mudd College on Sun, 06/09/2019 - 14:42
Description
Most of us have probably been there. Discussing homonuclear diatomic MO diagrams and on the first day you want to put up the sigma bonding molecular orbital for H2. If you teach it like me, you emphasize the LCAO-MO approach, so you draw a hydrogen atom with its 1s orbital interacting with a hydrogen atom with its 1s orbital...and then you notice giggling from the less mature audience members. My technique will help to prevent this from happening. The technique is in the "faculty only" files section.

Advanced Inorganic Chemistry

Submitted by Weiwei Xie / Louisiana State University on Sun, 06/09/2019 - 12:11
Description

Foundations: Atomic Structure; Molecular Structure; the Structures of Solids; Group Theory

The Elements and their Compounds: Main Group elements; d-Block Elements; f-Block Elements

Physical Techniques in Inorganic Chemistry: Diffraction Methods; Other Methods

Frontiers: Defects and Ion Transport; Metal Oxides, Nitrides and Fluorides; Chalcogenides, Intercalation Compounds and Metal-rich Phases; Framework Structures; Hydrides and Hydrogen-storage Materials; Semiconductor Chemistry; Molecular Materials and Fullerides.