Exploring Post-Translational Modification with DFT

Submitted by Gerard Rowe / University of South Carolina Aiken on Thu, 07/17/2014 - 12:52
Description

This activity is designed to give students a deeper understanding of what post-translational modification does in a metalloenzyme using nitrile hydratase (NHase) as a model system.  The metallo-active site of NHase contains a cobalt(III) center that is bound to an unusual coodination sphere containing bis-amidate, cysteinate, sulfenate (RSO-), and sulfinate (RSO2-) ligands.

Examining and Drawing Atomic Orbitals

Submitted by Chris Goh / Williams College on Tue, 07/15/2014 - 23:57
Description

This exercise makes use of a web-based tool to review quantum numbers of the orbitals of the hydrogen atom and to visualize atomic orbitals in 3D. Students are asked to draw the 1s-, 2p- and 3d-orbitals.

Dissecting Catalysts for Artificial Photosynthesis

Submitted by Anne Bentley / Lewis & Clark College on Mon, 07/07/2014 - 13:57
Description

Anne asked the students in her junior/senior inorganic course to develop their own literature discussion learning objects and lead the rest of the class in a discussion of their article.  Each student chose one article from a list of suggestions provided.  Student Hayley Johnston chose this article describing a Mn-containing catalyst for carbon dioxide reduction (Jonathan M. Smieja, Matthew D. Sampson, Kyle A. Grice, Eric E. Benson, Jesse D. Froehlich, and Clifford P.

A Jablinko game to promote learning of excited state transitions

Submitted by Alycia Palmer / The Ohio State University on Wed, 06/11/2014 - 09:48
Description

The in-class game Jablinko was designed to make learning excited state transitions fun. To play, a student chooses an excited state by placing a game chip at the top of the board, then the chip can “vibrationally cool” by bouncing through the pegs, and finally “transition” to a lower energy state in the bottom row. The students then compete to be the first to name the transition (e.g. S1 to T1 is called intersystem crossing).

Sheffield ChemPuter

Submitted by Chip Nataro / Lafayette College on Tue, 04/29/2014 - 16:42
Description

The Sheffield Chemputer is a site that does a variety of calculations including: isotope patterns, element percentages, reaction yields, oxidation states (for transition metal complexes), electron accounting (for metal complexes), VSEPR shape and classification using the CBC method. At the initial point of this post (April 29, 2014) parts of the site are still under development, but it seems to be off to a good start.

Student choice literature-based take home exam question

Submitted by Hilary Eppley / DePauw University on Fri, 01/24/2014 - 15:27
Description

During my junior/senior level inorganic course, we did several guided literature discussions over the course of the semester where the students read papers and answered a series of questions based on them (some from this site!).  As part of my take home final exam, I gave the students an open choice literature analysis question where they had the chance to integrate topics from the semester into their interpretation of a recent paper of their own choice from Inorganic Chemistry, this time with limited guidance.

Electronic Absorption Spectroscopy of Aquated Transition Metal Ions

Submitted by Zachary Tonzetich / University of Texas at San Antonio on Thu, 01/23/2014 - 12:07
Description

I developed this laboratory experiment for our instrumental analysis class. The course is taken by junior and senior chemistry majors, who for the most part have had one inorganic chemistry course and some physical chemistry. The laboratory is operationally very simple and has students record the UV-vis spectra of transition metal sulfate salts in water using volumetric technique. They record the molar absorptivities for each peak and use this data to determine the number of waters of hydration for each salt by comparing with literature absorptivity values.

The Atomic Building

Submitted by Aman Sra / University of Texas at Dallas on Mon, 01/13/2014 - 13:01
Description

Description: This is an in class activity I use for first year general chemistry students to understand the relationship between quantum numbers and the structure of the atom.

 

Crystal Field Theory: Analysis of the Iron Sites in Gillespite

Submitted by Zachary Tonzetich / University of Texas at San Antonio on Fri, 01/03/2014 - 17:36
Description

This in-class activity explores the electronic structure and spectroscopy of the square-planar iron(II) sites in the mineral gillespite through a crystal field theory approach. This activity is designed for an advanced inorganic chemistry course where group theory and more advanced topics in ligand field theory are taught. The activity is based on the work detailed in the paper: Burn, R. G.; Clark, M. G.; Stone, A. J. Inorg.

A Schaaking development of colloidal hybrid nanoparticles

Submitted by Anne Bentley / Lewis & Clark College on Thu, 06/27/2013 - 10:52
Description

This literature discussion was created at the NSF-TUES sponsored workshop at Penn State, June 2013.  It is based on the article from Ray Schaak’s group (Buck, Matthew R.; Bondi, James F.; Schaak, Raymond E. “A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles” Nature Chemistry, 2012 4, 37-44, DOI: 10.1038/NCHEM.1195), which Ray presented at the workshop.