Tuning the band gap of CZT(S,Se) nanocrystals by anion substitution

Submitted by Benny Chan / The College of New Jersey on Thu, 06/27/2013 - 09:45
Description

The paper from the Prieto group, Riha, S. C.; Parkinson, B. A.; Prieto, A. L. J. Am. Chem. Soc. 2011, 133, 15272-15275, is proposed to be an excellent literature article for achieving several learning goals in the understanding of fundamental solid state and materials chemistry. The learning object was developed as a part of the 2013 VIPEr workshop and has not been tested in the classroom. We have developed a set of discussion questions that can be used as a guide for the students.

Concept mapping the primary literature: "Compositionally Tunable Cu2ZnSn(S1-x,Sex)4 nanocrystals"

Submitted by Benny Chan / The College of New Jersey on Thu, 06/27/2013 - 09:26
Description

Concept maps are a visual way to organize and represent information. In this literature discussion, we introduce a novel technique for teaching literature analysis to students where concept maps are used for establishing relationships between the key ideas, theories, procedures, and methods of a proposed literature article. Using the article “Compositionally Tunable Cu2ZnSn(S1-xSex)4 Nanocrystals: Probing the Effect of Se-Inclusion in Mixed Chalcogenide Thin Films” (Riha, S.C.; Parkinson, B.A.; Prieto, A.L. J. Am. Chem.

Synthesis and Characterization of Magnetic Spinel Nanoparticles

Submitted by Anne Bentley / Lewis & Clark College on Wed, 06/26/2013 - 22:15
Description

This learning object centers around an article published fairly early on in the history of nanoscience (Sun, et al. “Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles” J. Am. Chem. Soc. 2004, 126, 273-279.

Literature summary through student presentation - free choice of topic.

Submitted by Cameron Gren / University of North Alabama on Wed, 06/26/2013 - 07:59
Description

(1) Student choses and reads a journal article of his/her choice that is related to a topic we have discussed during the semester. (i.e. atomic structure, MO theory, group theory, solid state structure, band theory, coordination chemistry, organometallics, catalysis). Suggested journals include, but are not limited to JACS, Inorg. Chem., Organometallics, Angew. Chem., JOMC, Chem. Comm.)

(2) Student answers the following questions regarding their chosen article:

    (a) Describe, in 1 or 2 sentences the goal of this work. 

X-ray absorption spectroscopy and its applications to LFT

Submitted by Karen McFarlane Holman / Willamette University on Tue, 06/25/2013 - 09:43
Description

This series of (not five) slides introduces X-ray absorption spectroscopy (XAS), specifically XANES (X-ray absorption near-edge structure).  There is background in basic theory, the general technique including synchrotron radiation sources, and two specific examples from the literature that apply XANES spectra to (1) oxidation state and effective nuclear charge of sulfur in various compounds such as sulfates, and (2) measurement of energy levels in MO diagrams of coordination compounds (i.e., LFT).  Point (2) is analogous to showing PES peaks alongside MO diagrams for diatomics.

Trends in Measured Redox Potentials and Computed Molecular Orbital Energies of Derivatized Buckminsterfullerenes

Submitted by Robert Q. Topper / Cooper Union on Tue, 06/25/2013 - 01:55
Description

In this project students are asked to reproduce published calculations of molecular orbital energies of a series of derivatized fullerenes and correlate them with published reduction and oxidation potentials obtained from cyclic voltammetry. The particular subset of the derivatives to be studied are chosen by the student and this choice is part of the learning activity. The students then carry out additional calculations using other theoretical models to see whether they improve the correlation between computed and experimental properties.

Band Structures, Electronic and Optical Properties of Metals, Semiconductors, and Insulators

Submitted by Maggie Geselbracht / Reed College on Tue, 06/25/2013 - 00:32

I created this Collection of Learning Objects (LOs) at the IONiC VIPEr TUES 2013 Workshop: Solid State Materials for Alternative Energy Needs held at Penn State University.  The overall theme of the Collection is electronic and optical properties of metals, semiconductors, and insulators.  Most of the learning objects either require knowledge of or explicitly refer to band structures, either at a basic level or a more advanced level.  Some LOs also deal with extended structures, un

MO Theory for Organometallic Compounds: Pentalene

Submitted by Zachary Tonzetich / University of Texas at San Antonio on Thu, 04/11/2013 - 16:54
Description

This is an in-class exercise for upper level inorganic students designed to highlight aspects of symmetry, group theory, MO theory, and Hückel theory. The exercise is an expansion of a Problem Set question I give to my Advanced Inorganic Chemistry class. In this activity, students will develop the MO diagram for the π system of the pentalene dianion using the Hückel approach. They will then consider the effect of folding the ring system using a Walsh diagram.

Online Courses Directory

Submitted by Adam Johnson / Harvey Mudd College on Mon, 04/01/2013 - 07:41
Description

This website is a free and comprehensive resource that is a collection of open college courses that spans videos, audio lectures, and notes given by professors at a variety of universities. The website is designed to be friendly and designed to be easily accessed on any mobile device.

Semi-Quantitative Molecular Orbital Diagrams

Submitted by Gerard Rowe / University of South Carolina Aiken on Thu, 02/14/2013 - 10:25
Description

In this activity, students construct molecular orbital correlation diagrams for several species (H2, He2, HeH), in a semi-quantitative fashion using a ruler and a list of first ionization energies.  All the MO schema are placed on a common energy scale, and the stability of each orbital is reported using "cm from the top of the paper" as the unit of energy.