Hydrogenative Depolymerization of Nylons

Submitted by Chip Nataro / Lafayette College on Tue, 08/23/2022 - 13:46
Description

This paper describes work from the Milstein group in which ruthenium catalysts with pincer ligands are used to depolymerize nylons by breaking the C-N bond and hydrogenating the resulting products to amines and alcohols. Waste plastic is a serious environmental concern that needs a solution. Organometallic chemists put significant effort into finding ways to convert monomers into polymers, and now we must figure out ways to do the reverse.

Inorganic Chemistry I

Submitted by Rudy Luck / Michigan Technological University on Wed, 08/17/2022 - 15:52
Description

Descriptive chemistry of the main group elements with some emphasis on the non-metals.  Transition metal compounds: aspects of bonding, spectra, and reactivity; complexes of n-acceptor ligands; organometallic compounds and their role in catalysis; metals in biological systems; preparative, analytical, and instrumental techniques. 

Inorganic Chemistry SC356

Submitted by Shirley Lin / United States Naval Academy on Fri, 08/12/2022 - 12:02
Description

From the course catalog: The chemistry of the Main Group elements and the transition metals are studied with emphasis on the properties, structures, and reactivities of these elements and their compounds.

 

Things to do on the first day of inorganic class!

Submitted by Kari Stone / Lewis University on Thu, 08/11/2022 - 13:58

This is a collection that will help when you are deciding how to introduce inorganic chemistry and/or assess prior knowledge in your inorganic class on the first day.

Inorganic Chemistry

Submitted by Briana Aguila-Ames / New College of Florida on Fri, 07/01/2022 - 11:20
Description

Syllabus for Inorganic Chemistry lecture taught in Spring 2022.

Introductory Inorganic Chemistry

Submitted by Nerissa Lewis / Seattle Pacific University on Wed, 06/29/2022 - 00:35
Description

A systematic study of chemical principles as applied to inorganic systems. This class consist of a 3 hour lecture and a 4 hour lab. Special emphasis is placed on group theory and the use of molecular orbital, ligand field, and crystal field theories as tools to understanding the structure and reactivity of inorganic compounds. 

Inorganic Chemistry

Submitted by Jennifer Young / Azusa Pacific University on Tue, 06/28/2022 - 17:57
Description

This course lays a foundation in the subjects of atomic structure, bonding theory, symmetry theory, and acid-base chemistry, which is then used to explore advanced topics involving crystalline compounds, coordination compounds, and organometallic compounds. Topics include bonding, spectroscopy, and kinetics.

Advanced Inorganic Chemistry

Submitted by Matthew Bork / Rockford University on Mon, 06/27/2022 - 16:50
Description

CHEM 405 Advanced Inorganic Chemistry – 4 Credit Hours

VIPEr Fellows 2022 Workshop Favorites

Submitted by Barbara Reisner / James Madison University on Sun, 06/26/2022 - 14:31

The second cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.