Formal NSF Styled Proposal Writing in Preparation for Original Multi-Week Laboratory Projects

Submitted by Lon Porter / Wabash College on Sat, 07/17/2010 - 13:23
Description

The advanced inorganic chemistry course is completed by all chemistry majors at Wabash College during the fall of their senior year. The capstone character of the course provides an excellent opportunity for utilizing an investigator model of laboratory learning. Student teams are responsible for the preparation of a formal, National Science Foundation (NSF) styled proposal stating the goals, context, experimental timetable, safety considerations, and budget for the execution of an original laboratory project.

Synthesis and Molecular Modeling of Sodium Tetrathionate

Submitted by Kim Lance / Ohio Wesleyan University on Sat, 07/17/2010 - 12:01
Description
This experiment is a computational supplement to synthesis of sodium tetrathionate described in "Macroscale Inorganic Chemistry:  A Comprehensive Laboratory Experience".*  Students will synthesize one sulfur oxyanion (tetrathionate), optimize and compute IR spectra for their synthesized product.   In addition, students will predict (using symmetry arguments) and then compute the IR vibrational modes for six additional sulfur oxyanions.  A comparison of theoretical (IR spectra),

Kinetics of Ligand Substitution Reactions of a Pt(II) Complex

Submitted by Scott Cummings / Dominican University on Sat, 07/17/2010 - 11:47
Description
This inorganic lab experiment, focusing on the kinetics of ligand-substitution reactions of a square-planar Pt(II) complex, involves collecting UV-vis absorption data and analyzing the results to determine a rate law to support one of three proposed mechanisms.

Electron Counting

Submitted by Adam Johnson / Harvey Mudd College on Thu, 07/15/2010 - 14:05
Description

I use these two handouts early in my inorganic course to outline how to count electrons and assign ligand types in a metal complex.  I introduce it early so that I can use the terms "X" and "L" in class.  I come back to it and hit it again when I do my unit on organometallics. The "ligands" handout is my interpretation of the MLH Green paper from 1995 (Green, M. L. H., J. Organometal.

Element Jeopardy!

Submitted by Keith Walters / Northern Kentucky University on Thu, 07/15/2010 - 11:44
Description

Like many inorganic faculty (especially those faced with trying to teach "all" of inorganic chemistry in a one-term junior/senior course), I have found it increasingly difficult over the years to include any significant descriptive chemistry content in my course. Moreover, I have a constant interest in trying to convey some of the "story behind the story" in chemistry, which in this area centers on the discovery of the elements. I was mulling this over at an ACS meeting one time and happened to be in an inorganic teaching session where Josh van Houten (St.

Organometallics and Named Reactions

Submitted by Laurel Goj Habgood / Rollins College on Sun, 07/11/2010 - 18:38
Description
A list of named reactions involving transition metal-complexes is provided to the class and the students present a brief overview of each which includes the original paper and a current application.

Molecular Origami: Precision Scale Models from Paper, by Robert M. Hanson

Submitted by Randall Hicks / Wheaton College on Tue, 06/29/2010 - 11:54
Description

This book called to me given my fascination with both origami and molecular model kits. While not a textbook in the true sense, the content of the book is pertinent to topics of molecular structure and symmetry and is therefore potentially valuable in both general and inorganic chemistry courses. In addition to the plans for constructing all the models (~125), there is a small amount of background information. Granted, many of these models could more easily be made using traditional model kits, but I had fun building them from paper.

Powder Diffraction Crystallography Instructional Materials

Submitted by Barbara Reisner / James Madison University on Mon, 06/28/2010 - 11:03
Description
Brian Toby (Argonne National Labs) has assebled an excellent series of tutorials on using the Rietveld analysis technique for powder diffraction data. Tutorials range from an "Introduction to Crystallography" and "Getting Started with Rietveld" to using the "Le Bail Intensity Extraction" Method to "Advanced Rietveld Techniques."

Descriptive Chemistry Wikipedia project

Submitted by Lori Watson / Earlham College on Mon, 06/21/2010 - 16:11
Description

Students select, research, and then post an article on an inorganic compound to Wikipedia. The compounds are chosen from a list of “stubs” (short articles that need to be expanded) found at http://en.wikipedia.org/wiki/Category:Inorganic_compound_stubs and might include such items as the synthesis, processes of isolation, structure, interesting facts about the compound in history, and/or an application of the compound.