A Schaaking development of colloidal hybrid nanoparticles

Submitted by Anne Bentley / Lewis & Clark College on Thu, 06/27/2013 - 10:52
Description

This literature discussion was created at the NSF-TUES sponsored workshop at Penn State, June 2013.  It is based on the article from Ray Schaak’s group (Buck, Matthew R.; Bondi, James F.; Schaak, Raymond E. “A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles” Nature Chemistry, 2012 4, 37-44, DOI: 10.1038/NCHEM.1195), which Ray presented at the workshop.

Tuning the band gap of CZT(S,Se) nanocrystals by anion substitution

Submitted by Benny Chan / The College of New Jersey on Thu, 06/27/2013 - 09:45
Description

The paper from the Prieto group, Riha, S. C.; Parkinson, B. A.; Prieto, A. L. J. Am. Chem. Soc. 2011, 133, 15272-15275, is proposed to be an excellent literature article for achieving several learning goals in the understanding of fundamental solid state and materials chemistry. The learning object was developed as a part of the 2013 VIPEr workshop and has not been tested in the classroom. We have developed a set of discussion questions that can be used as a guide for the students.

Concept mapping the primary literature: "Compositionally Tunable Cu2ZnSn(S1-x,Sex)4 nanocrystals"

Submitted by Benny Chan / The College of New Jersey on Thu, 06/27/2013 - 09:26
Description

Concept maps are a visual way to organize and represent information. In this literature discussion, we introduce a novel technique for teaching literature analysis to students where concept maps are used for establishing relationships between the key ideas, theories, procedures, and methods of a proposed literature article. Using the article “Compositionally Tunable Cu2ZnSn(S1-xSex)4 Nanocrystals: Probing the Effect of Se-Inclusion in Mixed Chalcogenide Thin Films” (Riha, S.C.; Parkinson, B.A.; Prieto, A.L. J. Am. Chem.

Collaborative Team Competition for Identification of Symmetry Operations on (Paper) Models

Submitted by Sophia E. Hayes / Washington University on Thu, 06/27/2013 - 08:18
Description

Students work individually, then compete in teams, to identify symmetry elements and operations present in a high-symmetry structure, such as an octahedron or tetrahedron (without showing the character table until the end of the activity).  Students often  visualize symmetry elements differently from one another.  Creating teams, allows them to work collaboratively, and the competition adds an incentive for finding the most elements.  Since some students are better at seeing some symmetry elements (and operations) than others, it allows for them to work in small groups to both teach and lea

Synthesis and Characterization of Magnetic Spinel Nanoparticles

Submitted by Anne Bentley / Lewis & Clark College on Wed, 06/26/2013 - 22:15
Description

This learning object centers around an article published fairly early on in the history of nanoscience (Sun, et al. “Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles” J. Am. Chem. Soc. 2004, 126, 273-279.

Kool-Aid analysis: Visible Spectroscopy and Paper Chromatography

Submitted by Megan Strayer / The Pennsylvania State University on Wed, 06/26/2013 - 13:55
Description

This lab experiment is designed to introduce the electromagnetic spectrum to non-science majors in a food chemistry course by using everyday food (i.e. Kool-Aid packets). Students will use a spectrophotometer to correlate wavelength to color, as well as determine the mass percent of certain colored dyes in a Kool-Aid sample. Paper chromatography is also introduced to determine the number of dyes in a Kool-Aid sample. This lab is adapted from Sigmann, S; Wheeler, D. J. Chem. Ed., 2004, 81, p. 1475.

Chimera - A Molecular Modeling Program

Submitted by Walter Flomer / St. Andrew's University on Wed, 06/26/2013 - 06:54
Description

Chimera is a program for interactive visualization and analysis of molecular structures and related data, including density maps, supramolecular assemblies, sequence alignments, docking results, trajectories, and conformational ensembles. High-quality images and animations can also be generated. Chimera includes documentation and tutorials, and can be downloaded free of charge for academic, government, non-profit, and personal use. Chimera was developed at UCSF and was funded by the National Institute of Health.

The Synthesis and Characterization of Cobalt Spinels

Submitted by Rebecca / The Ohio State University on Tue, 06/25/2013 - 21:19
Description

In this lab, students will use solid-state methods to synthesize cobalt and chromium spinels, ZnCr2O4, ZnCo2O4, CoAl2O4, and CoCr2O4. They will (1) characterize their structure with X-ray powder diffraction (XRD) and (2) characterize the color using UV-Vis diffuse reflectance spectroscopy.