Synthesis and Migratory-Insertion Reactivity of CpMo(CO)3(CH3): Small-Scale Organometallic Preparations Utilizing Modern Glove-Box Techniques

Submitted by Matt Whited / Carleton College on Mon, 08/26/2013 - 14:22
Description

This laboratory experiment spans three weeks and introduces advanced undergraduates to modern small-scale synthesis techniques involving an inert-atmosphere glove box.  The robust syntheses transform [CpMo(CO3]2 into the methylated CpMo(CO)3(CH3) and examine the phosphine-induced migratory insertion to form various Cp-supported Mo(II) acetyl complexes.  At each step in the synthesis, a combination of IR and multinuclear (1H, 13C, and 31P) NMR spectroscopies allow students to assess the purity of their products and

Five Slides About a Simple powder XRD Analysis

Submitted by Rebecca / The Ohio State University on Sat, 06/29/2013 - 21:28
Description

These slides walk students through a solid state synthesis with a simple powder XRD analysis. This presentation was made to answer the question “How do I know what came out of the furnace?” for a general chemistry audience, assuming very little XRD knowledge. Specifically this shows using XRD with database searching to determine phase purity through pattern matching.

(This does not cover the fundamentals of XRD, please see related links for that.)

 

Five Slides about X-ray Photoelectron Spectroscopy (XPS)

Submitted by Sophia E. Hayes / Washington University on Fri, 06/28/2013 - 09:35
Description

This is a short presentation giving an overview of x-ray photoelectron spectroscopy (XPS), meant to be an introduction for those who are unfamiliar with the technique.

Brief introduction to local surface plasmons (LSPRs) for nanoparticle color

Submitted by Sarah K. St. Angelo / Dickinson College on Fri, 06/28/2013 - 09:30
Description

This is a very brief introduction to the origin of color in nanoparticle systems.  A link to a video is included in the slides that shows the addition of the reducing agent to the gold precursor solution.  The link is also available as a Web Resourse (below).

Cmap: Concept Mapping Tool

Submitted by Amanda Reig / Ursinus College on Thu, 06/27/2013 - 16:17
Description

Cmap Tools is a powerful free program that can be used to create concept maps.  The program works on any platform.

Thanks to Kurt Birdwhistell for posting the link to this tool to the forum a while back.

Building hybrid nanoparticles

Submitted by Angela Jovanovic-Bischof / Penn State on Thu, 06/27/2013 - 15:02
Description

This in-class activity was created at the NSF-TUES sponsored workshop at Penn State, June 2013.  It is based on the article from Ray Schaak’s group (Buck, Matthew R.; Bondi, James F.; Schaak, Raymond E. “A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles” Nature Chemistry 20124, 37-44, DOI: 10.1038/NCHEM.1195), which Ray presented at the workshop.

QSAR and Inorganic Chemistry

Submitted by Vanessa / Albion College on Thu, 06/27/2013 - 14:59
Description

This presentation provides a short introduction to Quantitative Structure-Activity Relationships and its use in Inorganic Chemistry. A brief introduction to Linear-Free Energy Relationships and the Hammett Equation is given, followed by three examples of how QSARs have been used in inorganic chemistry. 

Defining Crystalline/Amorphous Phases of Nanoparticles through X-ray Absorption Spectroscopy and X-ray Diffraction: The Case of Nickel Phosphide

Submitted by Carrie Read Spray / Eastern Nazarene College on Thu, 06/27/2013 - 13:30
Description

This literature discussion activity is designed to highlight the use of different instrumentation and what details can be gained from each instrument.  It should also help the students review their knowledge of crystal structure, types of crystals, and amorphous solids.  The paper is from Chemistry of Materials, 2013, 25, 2394-2403 (DOI: 10.1021/cm303490y).  The paper should be given one week prior to class discussion, ideally after covering some of the instrumentation in class including X-ray dif

Molecular Structure - The Curious Case of Iron Tetracarbonyl

Submitted by Zachary Tonzetich / University of Texas at San Antonio on Thu, 06/27/2013 - 12:16
Description

This in-class activity traces the many contributions leading to the correct assignment for the solid-state structure of triiron dodecacarbonyl, [Fe3(CO)12],  with the aim of reinforcing ideas about IR spectroscopy and group theory. I give this activity to my advanced inorganic chemistry class (graduate students and senior undergrads). The activity is loosely based on the paper: Desiderato, R., Jr.; Dobson, G. R. J. Chem. Educ. 1982, 59, 752-756 and incorporates questions about symmetry and group theory for metal carbonyls.