Cobalt Schiff Base Zinc Finger Inhibitors

Submitted by Peter Craig / McDaniel College on Thu, 07/17/2014 - 13:08
Description

This is a literature discussion based on the paper “Spectroscopic Elucidation of the Inhibitory Mechanism of Cys2

Exploring Post-Translational Modification with DFT

Submitted by Gerard Rowe / University of South Carolina Aiken on Thu, 07/17/2014 - 12:52
Description

This activity is designed to give students a deeper understanding of what post-translational modification does in a metalloenzyme using nitrile hydratase (NHase) as a model system.  The metallo-active site of NHase contains a cobalt(III) center that is bound to an unusual coodination sphere containing bis-amidate, cysteinate, sulfenate (RSO-), and sulfinate (RSO2-) ligands.

Having fun with your own molecular models

Submitted by Arpita Saha / Georgia Southern University on Wed, 07/16/2014 - 15:04
Description

This is a fun chemistry project where students make model compounds to learn various structural aspects of the compound. This is an individual project that is each student is assigned with one compound.  They can use any item (for e.g. Styrofoam balls etc) to make their very own model compound. The model should contain all the atoms (visually distinctive), bonds, lone pairs. Student is expected to create something novel rather using molecular model kit. They can use text book and lecture material for the resources.

Examining and Drawing Atomic Orbitals

Submitted by Chris Goh / Williams College on Tue, 07/15/2014 - 23:57
Description

This exercise makes use of a web-based tool to review quantum numbers of the orbitals of the hydrogen atom and to visualize atomic orbitals in 3D. Students are asked to draw the 1s-, 2p- and 3d-orbitals.

The relevance of Transition Metal-Carbon Bonds in Biology and Chemistry

Submitted by Mwalimu / Russell Sage College on Tue, 07/15/2014 - 12:45
Description

The students will write a paper in which they analyze the Vitamin B12 co-enzyme from biological, chemical and biochemical perspectives, and will use the guided questions to help show the relevance of an organometallic chemistry experiment to real biochemical systems. This activity is based on a synthetic lab experiment that students would have performed on transition metal-carbon bonds in biology and chemistry (The lab experiment was adapted from third edition of “Inorganic Experiments” by Derek Woollins).

Cadmium Carbonic Anhydrase (CdCA): Sustaining Life Using a Toxic Metal Ion

Submitted by Peter Craig / McDaniel College on Tue, 07/15/2014 - 01:18
Description

The Diatom Thalassiosira weissflogii is very resilient.  It thrives in poor quality water, where high CO2 levels, chlorine and cadmium ion concentrations, and pH are observed.  How is it possible for cadmium ions to be a nutrient for this diatom, when it is normally seen as a toxin in biological systems?

This LO introduces students to bioinorganic chemistry using the enzyme carbonic anhydrase to illustrate biodiversity, adaptation, HASB theory, metal ion ligand bonding as represented by the PDB using Ligand Explorer, and more.

Application of binomial distribution to interpret 31P NMR for aqueous solution of alpha-dodecatungstophosphoric acid, H3[PW12O40]

Submitted by Poloxymetman / Canisius College on Mon, 07/14/2014 - 17:44
Description

31-P NMR spectrum of alpha-dodecatungstophosphoric acid is a combination of thirteen spectra, each spectrum representing the compound with a different number of 183W isotopes per molecule. In order to fully interpret the spectrum one needs to apply binomial distribution to calculate the mole fractions of the molecules with various numbers of 183W isotopes.

This LO requires an understanding of the satellites concept in NMR spectroscopy, originating from coupling with nuclei whose NMR active isotopes are not 100% abundant.

The Japan syndrome

Submitted by Carmen Gauthier / Florida Southern College on Mon, 07/14/2014 - 17:38
Description

This is an in-class discussion of an article that appeared in The Economist.  It can be used to review several topics covered in the first year chemistry class.

The Aconitase Enzyme Mechanism

Submitted by Laurel Goj Habgood / Rollins College on Mon, 07/14/2014 - 16:51
Description

This learning objective focuses on the enzyme aconitase.  The iron-sulfur cluster is used to regulate iron in the cell and isomerize citrate for energy – two very different mechanisms.  The activity consists of an introduction to the enzyme and a student discussion on the mechanism of the isomerization of citrate to isocitrate; starting in a small group setting followed by a class debriefing.