A Living Syllabus for Sophomore Level Inorganic Chemistry

Submitted by Sheila Smith / University of Michigan- Dearborn on Mon, 08/04/2014 - 16:02
Description

In my sophomore level inorganic course, I have experimented with the idea of a living syllabus as a way to develop my own specific learning objectives and to help the students connect the material to the tasks that will be expected of them in assessing their learning. 

Isn't It Ionic (with apologies to Alanis Morissette)

Submitted by Craig M. Davis / Xavier University on Sun, 08/03/2014 - 16:58
Description

This spoof of the song "Isn't It Ironic" (by Alanis Morissette) summarizes the properties of ionic compounds in verse. Suitable for General Chemistry classes as well as Inorganic Chemistry, although a reference is made to the Born-Meyer equation.

C&E News as a Starting Point for Bioinorganic Literature Discussions

Submitted by Chris Bailey / Wells College on Mon, 07/28/2014 - 15:37
Description

This learning object consists of a bibliography of materials concerning bioinorganic chemistry which have appeared in C&E News over approximately the past 15 years (1999-2014). Many come from the Science and Technology Concentrates, some from News of the Week, others are full articles, and a few are letters to the editor. They cover a wide variety of bioinorganic topics. Also included are citations for the articles from the primary literature paper referred to in the respective C&E News articles.

The Structure and Function of Transferrin

Submitted by Chris Bailey / Wells College on Tue, 07/22/2014 - 14:51
Description

These Five Slides About examine the structure and function of the iron binding and transport protein transferrin. Students learn that transferrin also acts as an iron buffer and as a potential antimicrobial agent. The structure of the protein is explored in detail; it consists of a single polypeptide (80kDa) folded into two lobes, each of which can bind a single iron in a high affinity region. Changes in the protein as a result of iron uptake is discussed. The iron binding region and the requirement of a bidentate synergistic anion (carbonate) are examined.

An Accounting Ledger Method for Determining Lewis Dot Structures

Submitted by Chris Bailey / Wells College on Sat, 07/19/2014 - 19:45
Description

Over several decades of teaching General Chemistry I have utilized various methods to get students to draw appropriate Lewis Dot Structures. About 10 years ago I learned about a process which I call the "Account Ledger Method". In this method all valence electrons are assumed to initially belong to the molecule (and placed in a ledger) and not to specific individual atoms. As the molecule is put together those electrons are distributed systematically and removed from the ledger.

A cuprous azide complex: The effect of structure on the stability of the azide ion

Submitted by Jim Jeitler / Marietta College on Thu, 07/17/2014 - 17:50
Description

This is a problem set based on the article "Energetic Cuprous Azide Complex: Synthesis, Crystal Structure and Effection on the Thermal Decomposition of HMX" in the Journal of Chemical Crystallography.  It has been used in a Chemistry Capstone course for both Chemistry and Biochemistry majors during the first semester senior year.  Biochemistry majors are not required to take Inorganic Chemistry and Chemistry majors may be currently taking Inorganic chemistry.

Utilizing the PDB and HSAB theory to understand metal specificity in trafficking proteins

Submitted by EGunn / Simmons College on Thu, 07/17/2014 - 15:19
Description

This is an in-class PDB exercise based on the paper "Mechanisms Controlling the Cellular Metal Economy" by Gilston and O'Halloran. Students are asked to visualize the metal binding sites of several proteins discussed in the paper, highlighting unusual metal geometries. After identifying the amino acid residues involved in metal binding, students will discuss the bond structure in terms of HSAB theory. 

Principles and imaging applications of CEST

Submitted by Justin / Northwestern University on Thu, 07/17/2014 - 15:19
Description

This five slides about chemical exchange transfer (CEST) discusses the magnetic properties of paramagnetic metal ions and their use as MR imaging agents. This includes tranditional contrast agents that affect the relaxation rate of nearby water protons and paramagnetic shift reagents suitable for CEST imaging applications. A recent redox-active cobalt complex is presented as an innovative agent for mapping redox imbalances in vivo.

Literature Discussion of "Mechanisms Controlling the Cellular Metal Economy"

Submitted by Kyle Grice / DePaul University on Thu, 07/17/2014 - 15:07
Description

This is a literature discussion of a review by Tom O'Halloran (The link to the paper is included in the "Web Resources" below). The review covers concepts of metal content in cells, metal trasport, storage, and regulation. Its a good review to start a broader or deeper discussion about metals in biology. We have provided some questions to help guide the student discussion. These questions can be given to students prior to coming to class, and the answers can either be used for the in-class discussion and/or collected.