The Structure and Color of Alums

Submitted by EGunn / Simmons College on Mon, 07/14/2014 - 13:09
Description

This is an in-class assignment designed to help students integrate their understanding of periodic trends and materials properties. Using the color of alum crystals as an example of octahedral coordination chemistry, students use their knowledge of electronic structure and periodic trends to predict which of the isomorphous alum crystals will be colored, and to qualtitatively rank the degree of crystal field splitting in a family of alum crystals.

Inorganic Spectroscopy Introduced Using an Interactive PhET Simulation (Part 2)

Submitted by Alycia Palmer / The Ohio State University on Mon, 07/14/2014 - 09:06
Description

This is the second part of a two-day class discussion on molecular and inorganic spectroscopy. In this activity, upper level students learn about spectroscopic tecniques used in inorganic chemistry and then devise an experiment to follow the progress of a hypothetical reaction. The activity also prepares students for the inorganic laboratory "Linkage isomerism of nitrogen dioxide" in which infrared spectroscopy is used to monitor changes to the N-O vibrational stretch upon coordination to a metal.

Coordination Diversity and Biological Activity of a Monodentate Au(III) Compound

Submitted by Sibrina Collins / College of Arts and Sciences at Lawrence Technological University on Thu, 07/10/2014 - 13:21
Description

 

This learning object focuses on a recent publication (Acta Crystallographia 2014, C70, 260 -266) by the Collins research group in the Department of Chemistry at The College of Wooster.  Specifically, the paper evaluates the coordination diversity of a N-donor ligand, 2-phenyl-1,10-phenanthroline(pnp) with three new pnp-metal complexes containing Au(III), Cu(II), and Pd(II) metal centers.

Dissecting Catalysts for Artificial Photosynthesis

Submitted by Anne Bentley / Lewis & Clark College on Mon, 07/07/2014 - 13:57
Description

Anne asked the students in her junior/senior inorganic course to develop their own literature discussion learning objects and lead the rest of the class in a discussion of their article.  Each student chose one article from a list of suggestions provided.  Student Hayley Johnston chose this article describing a Mn-containing catalyst for carbon dioxide reduction (Jonathan M. Smieja, Matthew D. Sampson, Kyle A. Grice, Eric E. Benson, Jesse D. Froehlich, and Clifford P.

Five Slides About Concurrent Tandem Catalysis

Submitted by Shirley Lin / United States Naval Academy on Thu, 07/03/2014 - 12:54
Description

This set of slides is adapted from a presentation given at the ACS National Meeting in New Orleans Spring 2013 in the symposium "Undergraduate Research at the Frontiers of Inorganic Chemistry" organized by members of the VIPEr leadership council. The slides are from the introduction to the presentation that takes the audience through how catalytic cycles are depicted and then to the concept of concurrent tandem catalysis (CTC). At the end, there is a slide with references that gives an example of how CTC can be applied to aryl halide substrates to form new C-C and C-H bonds.

Hard Soft Acid Base Theory - Coordination Trends in Alkali Metal Crown Ether Uranyl Halide Complexes: The Series [A(Crown)]2[UO2X4] Where A = Li, Na, K, and X = Cl, Br

Submitted by Gerard Rowe / University of South Carolina Aiken on Tue, 07/01/2014 - 11:13
Description

In this literature discussion, students are asked to read an article describing a series of uranyl halide compounds that contain an alkali counterion that interacts with one or more of the uranium's ligand atoms.  This paper stands out as a great example of the binding preferences of acids and bases, and can be explained very well using simple HSAB concepts.

Properties of olefin complexes: Pt(II) vs Au(III)

Submitted by Margaret Scheuermann / Western Washington University on Sat, 06/21/2014 - 22:01
Description

This is a literature discussion based on a paper titled “Generation and Structural Characterization of a Gold(III) Alkene Complex” (Angew. Chem. Int. Ed. 2013, 52, 1660 - DOI 10.1002/anie.201209140) that reports the first crystallographically characterized Au(III) alkene complex, [(cod)AuMe2] [BArF]. The synthesis and characterization of [(cod)AuMe2] [BArF] are presented. The structural properties are compared to those of the isoelectronic species (cod)PtMe2, and to free cod.

Complexes of alkenes, alkynes, and dienes

Submitted by Margaret Scheuermann / Western Washington University on Sat, 06/21/2014 - 21:35
Description

These slides provide an outline of the significance, bonding, properties, and reactivity of metal alkene, alkyne, and diene complexes appropriate for an upper division organometallics class. Animation is used to construct qualitative MO diagrams for olefins bound to octahedral metal centers that highlight specific bonding and antibonding interactions.

The chemdraw file used to create these slides is also provided.

A Jablinko game to promote learning of excited state transitions

Submitted by Alycia Palmer / The Ohio State University on Wed, 06/11/2014 - 09:48
Description

The in-class game Jablinko was designed to make learning excited state transitions fun. To play, a student chooses an excited state by placing a game chip at the top of the board, then the chip can “vibrationally cool” by bouncing through the pegs, and finally “transition” to a lower energy state in the bottom row. The students then compete to be the first to name the transition (e.g. S1 to T1 is called intersystem crossing).

Protein Electrochemistry 3rd Bioinorganic Workshop

Submitted by Sheila Smith / University of Michigan- Dearborn on Tue, 06/10/2014 - 15:17
Description

This is a 90 minute talk by Fraser Armstrong of Oxford University (http://armstrong.chem.ox.ac.uk) explaining the electrochemistry of proteins immobilized on surfaces.  The talk was presented at the 3rd Bioinorganic Workshop in 2014 at Pennsylvania State University.  The talk contains an excellent basic tutorial on simple electron transfer on immobilized substrates using simple iron sulfur proteins as the primary example.