Inorganic Chemistry
Syllabus for Inorganic Chemistry lecture taught in Spring 2022.
Syllabus for Inorganic Chemistry lecture taught in Spring 2022.
A systematic study of chemical principles as applied to inorganic systems. This class consist of a 3 hour lecture and a 4 hour lab. Special emphasis is placed on group theory and the use of molecular orbital, ligand field, and crystal field theories as tools to understanding the structure and reactivity of inorganic compounds.
This course lays a foundation in the subjects of atomic structure, bonding theory, symmetry theory, and acid-base chemistry, which is then used to explore advanced topics involving crystalline compounds, coordination compounds, and organometallic compounds. Topics include bonding, spectroscopy, and kinetics.
CHEM 405 Advanced Inorganic Chemistry – 4 Credit Hours
This Lattice Structures Visualizer is useful to see simple cubic, body-centered cubic, face-centered cubic, NaCl, CaF2, and hcp lattice structures. You can add atoms/ions layer by layer, break them apart into individual unit cells, and perform other modifications to better observe the structures without physical models. I use this routinely in my general and inorganic chemistry classes.
The second cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
The wave nature of electrons is applied to atomic structure and periodic trends. Inter and intramolecular bonding models are used to interpret the chemical and physical properties of various materials, from simplistic diatomic molecules to structurally complex molecular and ionic systems.
This article provides an introduction to thermoelectric materials and applications for space, highlighting a complex Zintl phase, Yb14-xCexMnySb11. Yb14MnSb11 is a semiconductor that can be substituted with Ce to change the number of carriers in the material and thereby enhance the transport properties.
This website displays interactive models of the unit cell contents of simple cubic, body-centered cubic, face-centered cubic, and hexagonal close-packed structures, in addition to several simple ionic compounds. Relationships between the close-packed atomic layers, the unit cell contents, and the structures of related ionic materials are highlighted.