Chimera - A Molecular Modeling Program

Submitted by Walter Flomer / St. Andrew's University on Wed, 06/26/2013 - 06:54
Description

Chimera is a program for interactive visualization and analysis of molecular structures and related data, including density maps, supramolecular assemblies, sequence alignments, docking results, trajectories, and conformational ensembles. High-quality images and animations can also be generated. Chimera includes documentation and tutorials, and can be downloaded free of charge for academic, government, non-profit, and personal use. Chimera was developed at UCSF and was funded by the National Institute of Health.

X-ray absorption spectroscopy and its applications to LFT

Submitted by Karen McFarlane Holman / Willamette University on Tue, 06/25/2013 - 09:43
Description

This series of (not five) slides introduces X-ray absorption spectroscopy (XAS), specifically XANES (X-ray absorption near-edge structure).  There is background in basic theory, the general technique including synchrotron radiation sources, and two specific examples from the literature that apply XANES spectra to (1) oxidation state and effective nuclear charge of sulfur in various compounds such as sulfates, and (2) measurement of energy levels in MO diagrams of coordination compounds (i.e., LFT).  Point (2) is analogous to showing PES peaks alongside MO diagrams for diatomics.

The Guided Tour of Metalloproteins

Submitted by Anthony L. Fernandez / Merrimack College on Tue, 04/09/2013 - 07:41
Description

Bob Morris of the University of Toronto created this website when he was teaching a class on Bioinorganic Chemistry.

Voices of Inorganic Chemistry

Submitted by Sibrina Collins / College of Arts and Sciences at Lawrence Technological University on Sun, 01/27/2013 - 17:08
Description

This learning object focuses on the new video series, “Voices in Inorganic Chemistry,” established to commemorate the 50th anniversary of the American Chemical Society journal, Inorganic Chemistry. The are currently 12 videos celebrating pioneers in the field of inorganic chemistry.  This activity consists of two components, namely the students watching one interview and writing an essay about their chosen inorganic chemist.

Soluble Methane Monooxgenase Spectroscopy

Submitted by Gerard Rowe / University of South Carolina Aiken on Fri, 07/20/2012 - 09:37
Description

Determining the reactive intermediates in metalloenzymes is a very involved task, and requires drawing from many different spectroscopies and physical methods.  The facile activation and oxidation of methane to produce methanol is one of the "holy grails" of inorganic chemistry.  Strategies exist within materials science and organometallic chemistry to activate methane, but using the enzyme methane monooxygenase, nature is able to carry out this difficult reaction at ambient temperatures and pressures (and in water, too!).

Dioxygen Activation in Non-heme Iron Enzymes

Submitted by Gerard Rowe / University of South Carolina Aiken on Fri, 07/20/2012 - 09:26
Description

This lecture provides a short introduction to the other half of biological iron chemistry:  enzymes that do not contain a porphyrin group that ligates the iron atom.  There are several important applications for non-heme iron in cells, both mammalian and bacterial.  Oxygen activating non-heme iron enzymes fall into a few basic categories and includes mononuclear iron monooxygenases and dioxygenases, and binuclear iron monooxygenases. The requirements to activate and utilize dioxygen will be given.

Metal MACiE Database

Submitted by Anthony L. Fernandez / Merrimack College on Mon, 07/16/2012 - 11:21
Description

As a non-bioinorganic chemist, I am always looking for resources to help me teach bioinorganic chemistry in both my sophomore-level and advanced inorganic chemistry courses.  The "metalloproteome" was the subject of an article in the December 12, 2011 issue of C&E News ("Merging Metals into Proteomics: Tackling the Systematic Study of Metalloproteins").  In this article, the author mentions a new database, called Metal MACiE, of metals in metalloenzymes.

Solubility and the Need for Bioinorganic Metal Ion Transport and Storage

Submitted by Sheila Smith / University of Michigan- Dearborn on Mon, 07/16/2012 - 09:42
Description

 

This is an in class exercise that I use to emphasize the need for metal ion transport and storage in biochemistry.  Applying the Van't Hoff equation to the Ksp value at 25°C for ferric hydroxide, students calculate the iron concentration at which ferric hydroxide would begin to precipitate out in the blood.  It' s an interesting problem that requires very little math beyond that used in gen chem, and the answer is in stark contrast to the amount of iron that we actually store in our bodies.  

VIPEr Screencast

Submitted by Chip Nataro / Lafayette College on Wed, 05/09/2012 - 10:27
Description

This screencast is a brief introduction to some of the features of VIPEr.

The Periodic Table of Life

Submitted by Katherine Franz / Duke University, Department of Chemistry on Fri, 04/20/2012 - 08:50
Description

A little more than 5 slides, this is a video I made for a colleague to use in General Chemistry as an intro, or hook, into exciting topics in chemistry (in this case, bioinorganic).  I use these slides as an intro to my junior/senior Inorganic course on the first day of class, to ask the question "What is Inorganic Chemistry?" and get them to think about the "living" parts of "inorganic".  Topics include an overview of essential, toxic, and medicinally active elements of the periodic table, key examples of metalloprotein active sites, and an overview of the functional roles of biological in