Analyzing the Proposed Reaction Profile in “Changing the Charge: Electrostatic Effects in Pd-Catalyzed Cross-Coupling”
This LO is a literature discussion based on one figure in Chan et. al.
This LO is a literature discussion based on one figure in Chan et. al.
This 1FLO focuses on the fundamentals of catalysis and the interpretation of catalytic data. The questions guide students through the definition of catalysts, turnover frequency, turnover number, and require the students to extract information from a table of catalytic data. The data set comes from the unprecedented activity of carba-closo-dodecaborate ligated gold catalysts in hydroamination reported by Lavallo and coworkers in 2013 (Lavallo, V.; Wright II, J. H.; Tham, F. S.; Quinlivan, S. Angew. Chem. Int. Ed. 2013, 52, 3172.
CHEM 405 Advanced Inorganic Chemistry – 4 Credit Hours
The second cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
Kari Stone (Lewis University) and Kyle Grice (DePaul University) discuss the implementation of course-based undergraduate research experiences (CUREs) at their schools.
Metals in biological systems can perform a wide range of reactions with exquisite efficiency and selectivity. In contrast, performing many of the same reactions in the lab requires harsh conditions and/or rare, expensive materials.
The course will cover the elements of the periodic table that are omitted in general and organic chemistry, mainly the transition (d-block) metals.
This LO was developed in 2022 as part of a collection celebrating the “Out in Inorganic Chemistry: A Celebration of LGBTQIAPN+ Inorganic Chemists” Inorganic Chemistry special issue. Check out the editorial and issue here: Editorial Special Issue
The questions below refer to the following 2020 publication by Dr. Jonathan Kuo and Dr. Karen Goldberg
This LO focuses on creating complexes with multiple bonds between late transition metals and nitrogen. The questions will guide students through Mindiola and Hillhouse's communication that details the synthesis and investigation of three-coordinate terminal amido and imido complexes of nickel. This communication is significant because it describes the synthesis and structural characterization of what became known as his "double nickel" complex, which contains a Ni-N double bond.