Can donor ligands make Pd(OAc)2 a stronger oxidant? (Stahl)

Submitted by Sarah Shaner / Southeast Missouri State University on Mon, 03/20/2023 - 15:29
Description

This Literature Discussion LO was created for the 2023 ACS Inorganic Chemistry Award Winners collection. Professor Shannon Stahl was the recipient of the 2023 Organometallic Chemistry Award. This LO is based on a recent paper from the Stahl group entitled "Can Donor Ligands Make Pd(OAc)2 a Stronger Oxidant? Access to Elusive Palladium(II) Reduction Potentials and Effects of Ancillary Ligands via Palladium(II)/Hydroquinone Reox Equilibria" published in J. Am. Chem. Soc. 2020, 142, 19678-19688.

National ACS Award Winners 2023 LO Collection

Submitted by Shirley Lin / United States Naval Academy on Mon, 03/06/2023 - 11:47

This collection of learning objects was created to celebrate the National ACS Award Winners 2023 who are members of the Division of Inorganic Chemistry. The list of award winners is shown below. 

Phosphate Reduction by Mechanochemistry (Cummins)

Submitted by Kyle Grice / DePaul University on Fri, 01/13/2023 - 11:15
Description

This Literature Discussion LO was created for the ACS Inorganic Chemistry Award Winners. Dr. Kit Cummins was the recipient of the 2023 Frederick Hawthorne Award in Main Group Inorganic Chemistry. This LO is based on a recent paper from the group of Dr. Cummins, entitled "Sustainable Production of Reduced Phosphorus Compounds: Mechanochemical Hydride Phosphorylation Using Condensed Phosphates as a Route to Phosphite", published in ACS Central Science20228, 332-339.

SLiThEr #42: Our Favorite Labs

Submitted by Chip Nataro / Lafayette College on Thu, 11/17/2022 - 08:29
Description

Chip Nataro (Lafayette College) hosts a live discussion covering the favorite labs that people teach. The discussion somewhat evolved into a conversation on "so, you are teaching inorganic lab for the first time...what do you do?"

Nickel-catalyzed Hydrodefluorination

Submitted by Chip Nataro / Lafayette College on Wed, 08/24/2022 - 12:29
Description

This paper describes the use of a  catalytic nickel system for the hydrodefluorination of aryl amides. While organofluorine compounds are extremely useful because of their unique properties, there are growing concerns about the impact of these compounds on the environment. Carbon-fluorine bonds are extremely strong, and so getting them to react is a significant challenge for chemists.

Hydrogenative Depolymerization of Nylons

Submitted by Chip Nataro / Lafayette College on Tue, 08/23/2022 - 13:46
Description

This paper describes work from the Milstein group in which ruthenium catalysts with pincer ligands are used to depolymerize nylons by breaking the C-N bond and hydrogenating the resulting products to amines and alcohols. Waste plastic is a serious environmental concern that needs a solution. Organometallic chemists put significant effort into finding ways to convert monomers into polymers, and now we must figure out ways to do the reverse.

Inorganic Chemistry I

Submitted by Rudy Luck / Michigan Technological University on Wed, 08/17/2022 - 15:52
Description

Descriptive chemistry of the main group elements with some emphasis on the non-metals.  Transition metal compounds: aspects of bonding, spectra, and reactivity; complexes of n-acceptor ligands; organometallic compounds and their role in catalysis; metals in biological systems; preparative, analytical, and instrumental techniques.