Advanced Inorganic Chemistry

Submitted by Jeremy R. Andreatta / Worcester State University on Tue, 06/04/2019 - 23:07
Description

This course is a survey of the chemistry of the inorganic elements focusing on the relationship between electronic structure, physical properties, and reactivity across the periodic table. Topics to be covered include: atomic structure, chemical bonding, group theory, spectroscopy, crystal field theory, coordination chemistry, organometallic chemistry and catalysis, and bioinorganic chemistry.  Prerequisites: Successful completion of CH120, CH121, (with a C- or better) and CH 301 (suggested)

Inorganic Chemistry

Submitted by Leon / Stonehill College on Mon, 06/03/2019 - 11:32
Description

This course covers fundamentals of central topics in inorganic chemistry from historical to modern-day perspectives.  Topics include: coordination compounds (history, structure, bonding theories, reactivity, applications); solid state chemistry (crystals, lattices, radius ratio rule, defect structures, silicates & other minerals); and descriptive chemistry of the elements.

Advanced Inorganic Chemistry

Submitted by John Miecznikowski / Fairfield University on Sun, 06/02/2019 - 16:48
Description

This lecture course will introduce students to the interdependence of chemical bonding, spectroscopic characteristics, and reactivity properties of coordination compounds and complexes using the fundamental concept of symmetry.  After reviewing atomic structure, the chemical bond, and molecular structure, the principles of coordination chemistry will be introduced.   A basic familiarity with symmetry will be formalized by an introduction to the elements of symmetry and group theory.  The students will use symmetry and group theory approaches to understand central atom hybridization, ligand

Inorganic Chemistry

Submitted by Anthony L. Fernandez / Merrimack College on Wed, 05/22/2019 - 10:42
Description

This course introduces the chemistry of transition metals and main group elements. Topics include theories of bonding, kinetics and mechanisms of reactions of transition metal complexes, oxidation-reduction reactions, hard-soft acid-base theory, and solid-state chemistry. Applications of inorganic chemistry to other areas (organic, analytical, and physical chemistry, as well as biology and biochemistry) are highlighted throughout the course. The laboratory portion of the course involves the synthesis and spectroscopic investigation of inorganic complexes.

Redox-switch polymerization catalysis

Submitted by Chip Nataro / Lafayette College on Tue, 03/26/2019 - 13:49
Description

This is the full literature discussion based on a communicaiton (J. Am. Chem. Soc. 2011133, 9278). This paper describes a redox-switch yttrium catalyst that is an active catalyst for the polymerization of L-lactide in the reduced form and inactive in the oxidized form. The catalyst contains a ferrocene-based ligand that serves as the redox active site in the catalyst. This full literature discussion is an extension of the one figure literature discussion that is listed below.

1FLO: Redox-switch polymerization catalysis

Submitted by Chip Nataro / Lafayette College on Fri, 03/22/2019 - 16:11
Description

This is what I hope will be a new classification of learning object called a one figure learning object (1FLO). The purpose is to take a single figure from a paper and present students with a series of questions related to interpreting the figure. This literature discussion is based on a paper (J. Am. Chem. Soc. 2011, 133, 9278) from Paula Diaconescu's lab in which a yttrium polymerization catalyst with a ferrocene-based ligand can effectively be rendered active or inactive depeneding on the valence state of the ligand.

Advanced ChemDraw (2019 Community Challenge #2)

Submitted by Chantal Stieber / Cal Poly Pomona on Tue, 02/12/2019 - 12:12
Description

This in-class activity was designed for a Chemical Communications course with second-year students. It is the second part of a two-week segment in which students learn how to use ChemDraw (or similar drawing software to create digital drawings of molecules).

Inorganic Chemistry

Submitted by Steven Girard / University of Wisconsin - Whitewater on Fri, 02/01/2019 - 11:58
Description

This course is composed of two components:

A. Lecture:

5-ish Slides About Bridging Hydrides and the [Cr(CO)5HCr(CO)5] anion

Submitted by Kyle Grice / DePaul University on Thu, 01/31/2019 - 13:52
Description

This set of slides was made for my Organometallics class based on questions about bridging hydrides and specifically the chromium molecule. I decided to make these slides to answer the questions, and do a DFT calc to show the MO's involved in bonding of the hydride.