Open-ended Recrystallization Addition to the Traditional M(acac)3 Laboratory

Submitted by Hilary Eppley / DePauw University on Fri, 04/03/2009 - 10:14
Description

In this open-ended activity, students design crystallizations to can see who can grow the biggest crystals of their colorful products. This addition is something that I add to the standard M(acac)3 syntheses that many of us do as an introductory lab in an upper level course or as a final lab in an introductory type course. Syntheses of the M(acac)3 starting materials are available in most published inorganic laboratory manuals.

Inorganic Challenges

Submitted by Patrick Holland / Yale University on Tue, 03/10/2009 - 15:39
Description

The Interactive Inorganic Challenge Forum is a resource for inorganic chemistry teachers who want to incorporate team learning questions (“Challenges”) into an upper level undergraduate inorganic course. Through this site, teachers can exchange their ideas with others who have used inorganic chemistry Challenges. As a result, students benefit from field-tested group questions.

Interactive Spreadsheets for Inorganic Chemistry

Submitted by Lori Watson / Earlham College on Sun, 03/08/2009 - 15:28
Description

This web site contains a number of interactive spreadsheets, most of which are applicable to inorganic chemistry (or a physical chemistry class that uses inorganic examples).  Here's the list of the most relevant for most inorganic classes:

 

ABC kinetics - interactively plot concentration versus reaction extent for A, B and C in A -> B -> C by varying k values

Ligand Substitution Kinetics Worksheet

Submitted by Nancy Williams / Scripps College, Pitzer College, Claremont McKenna College on Tue, 03/03/2009 - 12:23
Description

This worksheet gives students practice with deriving and analyzing the rate laws for two step mechanisms. It's a good review of steady-state kinetics, the assumptions one makes in deriving rate laws, and rate determining steps (and how these last affect the rate law). It finishes by connecting these ligand substitution kinetics to Michaelis-Menton kinetics to show that "it's all the same math, we just change the form". 

House: Inorganic Chemistry

Submitted by Adam Johnson / Harvey Mudd College on Mon, 01/12/2009 - 15:35
Description

House (Inorganic chemistry):  The book is divided into 5 parts:  first, an introductory section on atomic structure, symmetry, and bonding; second, ionic bonding and solids; third, acids, bases and nonaqueous solvents; fourth, descriptive chemistry; and fifth, coordination chemistry.  The first three sections are short, 2-4 chapters each, while the descriptive section (five chapters) and coordination chemistry section (seven chapters covering ligand field theory, spectroscopy, synthesis and reaction chemistry, organometallics, and bioinorganic chemistry.) are longer.  Each chapter includes

Sherlock Holmes in Transition-Metal Chemistry

Submitted by Patrick Holland / Yale University on Mon, 07/28/2008 - 10:35
Description
This Challenge practices problem-solving and several different characterization techniques for coordination compounds. Inorganic Challenges are exercises designed to be solved by a small group of students. Some Challenges practice a problem-solving algorithm, some reinforce important concepts, and some involve creativity or games.

Computational Study of tetrachlorbis(dimethylsulfoxide) tin(IV) Linkage Isomers

Submitted by N. Fackler / Nebraska Wesleyan University on Wed, 07/16/2008 - 17:23
Description

This experiment is a computational supplement to Part B of the tin chemistry described in "Synthesis and Technique in Inorganic Chemistry" (Exp 7; see below for the complete citation).*  Students will optimize and compute IR spectra for the cis and trans and corresponding linkage isomers of tetrachlorbis(dimethylsulfoxide) tin(IV).  A comparison of experimental (IR spectra) and computational data (enthalpies of formation; IR spectra) will aid them in determining the most likely product of this simple synthesis and in identifying the S-O vibrations in their experimental spectrum.

Computational Modeling of a Molybdenum Piano Stool Complex

Submitted by N. Fackler / Nebraska Wesleyan University on Wed, 07/16/2008 - 15:28
Description

This is a computational/molecular modeling supplement to the synthesis of  [1,3,5-C6H3(CH3)3]MoCO3 included in the third edition of  "Synthesis and Technique in Inorganic Chemistry" (see full citation below)*. Students optimize the model and compute an infrared spectrum and compare it to their experimental (solution) spectrum.

*G. S. Giorlami, T. B. Rauchfuss, R. J. Angelici  “Synthesis and Technique in Inorganic Chemistry: A Laboratory Manual”, Third Edition