The Electronic Properties of tris-(2,2'-bipyridine)-ruthenium(II) Lab Experiment(s)

Submitted by Jared Paul / Villanova University on Wed, 02/02/2011 - 19:41
Description

This is a lab experiment designed to cover an array of techniques, including metal complex synthesis, spectroscopy and electrochemistry.  Overall, the goal is to synthesize the metal complex Ru(bpy)32+, exchange the counter ion to demonstrate changes in solubility, absorbance and emission properties (including excited state quenching through energy and electron transfer, and ground state oxidation), as well as cyclic voltammetry of the complex.

Kinetics of Ligand Substitution Reactions of a Pt(II) Complex

Submitted by Scott Cummings / Dominican University on Sat, 07/17/2010 - 11:47
Description
This inorganic lab experiment, focusing on the kinetics of ligand-substitution reactions of a square-planar Pt(II) complex, involves collecting UV-vis absorption data and analyzing the results to determine a rate law to support one of three proposed mechanisms.

Element Jeopardy!

Submitted by Keith Walters / Northern Kentucky University on Thu, 07/15/2010 - 11:44
Description

Like many inorganic faculty (especially those faced with trying to teach "all" of inorganic chemistry in a one-term junior/senior course), I have found it increasingly difficult over the years to include any significant descriptive chemistry content in my course. Moreover, I have a constant interest in trying to convey some of the "story behind the story" in chemistry, which in this area centers on the discovery of the elements. I was mulling this over at an ACS meeting one time and happened to be in an inorganic teaching session where Josh van Houten (St.

Metals in Biological Systems - Who? How? and Why?

Submitted by Betsy Jamieson / Smith College on Wed, 01/20/2010 - 10:01
Description

This learning object was developed collaboratively by members of the IONiC Leadership Council.  The overall goal is to provide a general overview of metals in biological systems and introduce students to several of the important ideas in the field of bioinorganic chemistry.  Topics include toxic metals, metals used in biological systems and the overlap of these categories; issues associated with the uptake, transport and storage of metal ions; and the benefits gained by using metals in biological molecules.  

Pyrophoric Liquid Safety Video

Submitted by Adam Johnson / Harvey Mudd College on Wed, 01/13/2010 - 14:18
Description

This website is a video put out by UCLA and is a good general introduction to using pyrophorics.  It would be good for required viewing for ALL researchers who intend to use Grignards, alkyl metals, organometallics, LiH, etc.

Updated June 2015 to provide a new link; the old link no longer worked.

Siderophore Building: In class Exercise

Submitted by Sheila Smith / University of Michigan- Dearborn on Tue, 10/27/2009 - 21:25
Description
This is an in-class exercise (brainstorming) designed to lead the student through the design of a siderophore (or "iron lover") by applying his knowledge of Lewis acid- base chemistry (specifically HSAB theory), geometry and entropy. This is a good start for a discussion of iron transport and storage in the bioinorganic section of Inorganic II (transition metals). I also use it in my junior level descriptive course when we discuss coordination chemistry.

Coordination chemistry via Inorganic Chemistry ASAP

Submitted by Hilary Eppley / DePauw University on Mon, 09/14/2009 - 11:23
Description
This in-class activity is a fun way to show students how to apply basic concepts of coordination chemistry to complicated systems that appear in a recent issue of Inorganic Chemistry. After quickly reviewing types of ligands (monodentate, chelating, bridging), how we assign charge to ligands and metals in complexes, and the idea of coordination number, I took my class through a number of "real world" examples from the latest ASAP edition of Inorganic Chemistry.

Energy Nuggets: Wise Energy Use – The Challenge of Nitrogen Fixation

Submitted by Maggie Geselbracht / Reed College on Tue, 06/16/2009 - 01:33
Description
This literature discussion activity is one of a series of “Energy Nuggets,” small curricular units designed to illustrate: The Role of Inorganic Chemistry in the Global Challenge for Clean Energy Production, Storage, and Use.

Fourier Transforms and the Phase Problem

Submitted by Adam Johnson / Harvey Mudd College on Tue, 06/09/2009 - 13:03
Description

At the end of my inorganic course, I teach several "cool" spectroscopic techniques that inorganic chemists use.  These techniques are discussed within the context of bioinorganic chemistry, and I typically cover EXAFS/XANES, X-ray crystallography, EPR and Mössbauer.  

This website introduces (or reviews) Fourier Transforms in a neat graphical way, but most importantly, illustrates the phase problem.  Given the intensities from your crystal and the phases from your model, the phases are more important!  Which is too bad, as we don't have ready access to that information.