Reactions of Cp*2Zr(2,3-dimethylbutadiene)

Submitted by Chip Nataro / Lafayette College on Tue, 01/17/2017 - 17:58
Description

This literature discussion is based on a paper detailing the structure and reactivity of the title compound (Organometallics, 201635,

Group VI metal carbonyl compounds with pincer ligands

Submitted by Chip Nataro / Lafayette College on Wed, 01/11/2017 - 16:43
Description

This literature discussion is based on a short paper describing a series of Group VI metal carbonyl compounds that have pincer ligands (Organometallics, 2016

Inorganic Chemistry for Geochemistry and Environmental Sciences Fundamentals and Applications by George W. Luther III

Submitted by Rachel Narehood Austin / Barnard College, Columbia University on Wed, 01/04/2017 - 16:10
Description

This is a great new textbook by George Luther III from the University of Delaware.  The textbook represents the results of a course he has taught for graduate students in chemical oceanography, geochemistry and related disciplines.  It is clear that the point of the book is to provide students with the core material from inorganic chemistry that they will  need to explain inorganic processes in the environment.

Guided Literature Discussion of “Synthesis, Electrochemistry, and Reactivity of Half-Sandwich Ruthenium Complexes Bearing Metallocene-Based Bisphosphines”

Submitted by M. Watzky / University of Northern Colorado on Tue, 01/03/2017 - 13:09
Description

This Guided Literature Discussion was assigned as a course project, and is the result of work originated by students Stefanie Barnett and Katelyn Yowell.  It is based on the article “Synthesis, Electrochemistry, and Reactivity of Half-Sandwich Ruthenium Complexes Bearing Metallocene-Based Bisphosphines”, Shaw, A.P.; Norton, J.R.; Bucella, D.; Sites, L.A.; Kleinbach, S.S.; Jarem, D.A.; Bocage, K.M.; Nataro, C. Organometallics 2009, 28, 3804-3814.

Binding dinitrogen to titanium sandwich compounds

Submitted by Chip Nataro / Lafayette College on Tue, 12/27/2016 - 12:06
Description

The literature discussion is based on one of the early papers from the Chirik group (J. Am. Chem. Soc., 2004, 126, 14688). In this communication, the coordination of N2 to a series of (C5H4R)2Ti fragments is examined. Being a communication, it is very short and that helps make it less intimidating for undergraduates. But don't be fooled, it is very rich in the fundamental concepts of orgnaometallic chemistry.

Molecular Hydrogen Complexes of Mo and W

Submitted by Kyle Grice / DePaul University on Fri, 11/11/2016 - 19:28
Description

Literature discussion about the first examples of molecular hydrogen complexes isolated by Gregory J. Kubas in the early 80s. The questions are divided into groups with two levels of difficulty.

The more basic group of questions includes topics on:

1)      Coordination Chemistry: electron count, geometry, oxidation state, orbital interactions, types of ligands, binding modes, cis/trans and fac/mer isomers.

2)      Symmetry elements and point groups.

3)      Basic concepts on spectroscopy: NMR, Raman, IR, UV/Vis, XANES, EXAFS, neutron and X-ray diffraction

Ethylene compounds of the coinage metals

Submitted by Chip Nataro / Lafayette College on Mon, 10/17/2016 - 12:55
Description

This is a literature discussion based on a short paper on ethylene compounds of the coinage metals (Dias, H. V. R.; Wu, J. Organometallics 2012, 31, 1511-1517). In this paper, analogous ethylene compounds are prepared with Cu(I), Ag(I) and Au(I). The other ligand on the coinage metal is a scorpionate tris(pyrazolyl)borate ligand. The strength of the interaction between the metal and the ethylene varies significantly with the coinage metal as seen in X-ray crystallographic and spectroscopic (1H and 13C NMR) data.

Oxorhenium(V) Methyl, Benzyl, and Phenyl Complexes: New Mechanism for Carbonyl Insertion

Submitted by Matthew Riehl / Minnesota State University, Mankato on Thu, 06/30/2016 - 20:59
Description

The article “Synthesis and Reactivity of Oxorhenium(V) Methyl, Benzyl, and Phenyl Complexes with CO; Implications for a Unique Mechanism for Migratory Insertion,” Robbins, LK; Lilly, CP; Smeltz, JL; Boyle, PD; Ison, EA;, Organometallics 2015, 34, 3152-3158 is an interesting read for students studying reaction mechanisms of organometallic complexes.  The reading guide directs students to the sections of the paper that support the question posed in the Discussion Questions document. 

Structure matching: the $64,000 question

Submitted by Kari Stone / Lewis University on Thu, 06/30/2016 - 14:31
Description

In-class exercise that helps students learn how to use structural data and other experimental methods to assign structure. Using chemical intuition, students will rationalize the structures of metal complexes that differ by protonation states.

Electrochemical and Carbonyl Frequencies to Explain Ligand Non-Innocence in Organometallic Pincer Complexes

Submitted by Bryan Sears / Emmanuel College on Thu, 06/30/2016 - 10:52
Description

In this literature discussion, students read an Inorganic Chemistry paper (doi: 10.1021/ic503062w) about diarylamido-based PNZ pincer ligands and their Ni, Pd, and Rh complexes. Specifically, this paper uses IR and E1/2 potentials to demonstrate that the redox events occur not on the metal center but on the pincer ligands.