Shape & Polarity Review with Clickers

Submitted by Jim Kirby / Quinnipiac University on Tue, 07/07/2015 - 00:01
Description

A set of questions to be used in General or Introductory Inorganic Chemistry as a review or “quiz” of shapes and polarities.

Peer Review - How does it work?: A literature discussion with a focus on scientific communication

Submitted by Mike Norris / University of Richmond on Thu, 07/02/2015 - 20:21
Description

This learning object is based on discussion of the literature, but it follows a paper through the peer review process.  Students first read the original submitted draft of a paper to ChemComm that looks at photochemical reduction of methyl viologen using CdSe quantum dots.  There are several important themes relating to solar energy storage and the techniques discussed, UV/vis, SEM, TEM, electrochemistry, and catalysis, can be used for students in inorganic chemistry.

Kinetics of electrocatalytic reduction of carbon dioxide by Mn catalysts containing bulky bipyridine ligands

Submitted by Kathleen Field / WGU on Thu, 07/02/2015 - 17:23
Description

This question set has students examine the kinetics of the electrocatalytic reduction of CO2 to CO described in Sampson, D.L.; Nguygen, D., Grice, K.A.; Moore, C.E.; Rheingold, A.L.; Kubiak, C.P. Manganese Catalysts with Bulky Bipyridine Ligands for the Electrocatalytic Reduction of Carbon Dioxide:  Eliminating Dimerization and Altering Catalysis.  J. Am. Chem. Soc. 2014, 136, 5460-5471. 

Analyzing a journal article for basic themes, roles of authors, and the scientific method

Submitted by Darren Achey / Kutztown University on Thu, 07/02/2015 - 15:03
Description

This literature discussion is meant to give students an understanding of both the key concept-driven and more “meta” information of a literature paper.  Students will use Jillian Dempsey’s paper, “Electrochemical hydrogenation of a homogeneous nickel complex to form a surface-adsorbed hydrogen-evolving species,” to investigate paper authorship, how the scientific method is used in research, and how to understand the important findings of a research article.

 

Reference: Chem. Commun., 2015, 51, 5290-5293

DOI:10.1039/C4CC08662G

 

Chemistry Infographics from Compound Interest

Submitted by Darren Achey / Kutztown University on Tue, 06/30/2015 - 14:48
Description

Compound Interest is a website that creates infographics for chemistry related events and items.  Specific examples of inorganic chemistry infographics include showing how the metal content in colored glass gives the glass its characteristic color, how the lighting of a match works with the conversion of red phosphorus to white phosphorus, and the various colors that transition metals can have in different oxidation states in water, among many other examples.

The Messy Chemist: Separating a Solid Mixture

Submitted by Mike Norris / University of Richmond on Tue, 06/30/2015 - 14:42
Description

This lab exercise gives students a problem scenario (a mixture of 4 solids) and asks them to determine a way to separate them from each other utilizing experimentation, previous knowledge, and discussion.  Students are expected to write a standard operating procedure detailing the method they determine for the separation at the end of the lab.  A modified version of this lab was originally performed in an accelerated summer class on chemistry given to 7th, 8th, and 9th graders that were on a track for early entrance into college.  The lab was done over the c

Synthesis of Aspirin- A Lewis Acid Approach

Submitted by Kathleen Field / WGU on Mon, 06/29/2015 - 21:29
Description

This is the procedure for a Fe(III) catalyzed synthesis of aspirin, an alternative to the traditionally sulfuric acid catalyzed synthesis of aspirin.  The prep compares and contrasts the Bronsted acid catalyzed esterification reaction with a Lewis acid iron (III) catalyzed pathway.  This can be used in different courses at different levels, but is it written for a general/intro level chemistry course.    

Vibrational Modes and IR Spectra for Intro Chem

Submitted by Karen McFarlane Holman / Willamette University on Mon, 06/29/2015 - 15:14
Description

In this activity, Introductory Chemistry students are given two possible structures of sulfur dioxide, and based on an assessment of given vibrational modes, they determine which of the modes are IR active (and thus, whether the molecule is a greenhouse gas).  They compare their assessment to experimental IR absorption peaks, and the students decide which structure is valid.

Beautiful Chemistry

Submitted by Adam Johnson / Harvey Mudd College on Wed, 06/10/2015 - 14:42
Description

This is just a cool little website I just happened to stumble upon today while looking for something else at the RSC site. It comes from China, and it is pretty!

Periodically Periodic

Submitted by Barbara Reisner / James Madison University on Sun, 01/25/2015 - 08:50
Description

I like having students look at data and then explain data based on what they know about periodic trends. This activity uses the data we all use for radii and ionization energies and asks students to look just a little bit deeper. 

I have gone back and forth between using this as an in class activity (my current practice) and using some of these questions on exams.