Inorganic Nomenclature: Naming Coordination Compounds

Submitted by Gary Guillet / Furman University on Mon, 07/31/2017 - 15:23
Description

I do not like to take a large amount of time in class to cover nomenclature of any kind, though I want students to know the names of common ligands and the basic ideas of how coordination complexes are named.  Since it is a systematic topic I assign this guided inquiry worksheet.  I guess I think about it like learning rules for a new board game, sometimes you just have to play and learn as you go.  This assignment is meant to establish teh basica rules for naming by guiding students through what the needs are in naming, then it allows them to identify the convetions from a list of structur

Formulas and Nomenclature of Compounds

Submitted by Sarah Shaner / Southeast Missouri State University on Sun, 03/26/2017 - 12:41
Description

Students will be given the formula for a cation or anion on a slip of paper or index card. He or she will find another student with an ion with the opposite charge and practice writing the formula and naming the ionic compound that would result by combining the cation and anion. Students also answer a few questions about naming and formulas of binary molecular compounds with their partner.

KINETICS - Computations vs. Experiment

Submitted by Teresa J Bixby / Lewis University on Sat, 03/25/2017 - 12:10
Description

<p>This activity has students use Spartan to build an energy diagram for an SN2 reaction as a function of bond length. The activation energy can then be used to determine the rate constant for the reaction. After a few intoductory questions to orient general chemistry students to the organic reaction (with a short class discussion), the instructions lead them step-by-step to build the energy diagram for CH&lt;sub&gt;3&lt;/sub&gt;Cl + Cl- --&gt; Cl- + CH&lt;sub&gt;3&lt;/sub&gt;Cl.

calistry calculators

Submitted by Adam Johnson / Harvey Mudd College on Wed, 01/18/2017 - 18:17
Description

I just stumbled on this site while refreshing myself on the use of Slater's rules for calculating Zeff for electrons. There are a variety of calculators on there including some for visualizing lattice planes and diffraction, equilibrium, pH and pKa, equation balancing, Born-Landé, radioactive decay, wavelengths, electronegativities, Curie Law, solution preparation crystal field stabilization energy, and more.

I checked and it calculated Zeff correctly but I can't vouch for the accuracy of any of the other calculators. 

Symbolize It All

Submitted by Fabiola BL / The Cooper Union for the Advancement of Science and Art on Wed, 07/27/2016 - 13:58
Description

This is an HTML program that helps you spell with symbols of chemical elements for anything you want. Just cut and paste the text, paragraph or list of names you would like to "symbolize" in the left field. The program automatically displays the words that could be spelled with chemical symbols in the right field. When a word has more than one possible spelling, all of the possible combinations are displayed on a single line.

Chemical Information Available on the Web

Submitted by Matthew Riehl / Minnesota State University, Mankato on Thu, 06/30/2016 - 22:21
Description

This exercise introduces students to many chemical resources found on the internet.  Rather than being geared for upper-division chemistry majors, much of the material introduced is appropriate for freshmen and sophomore level students (although more advanced students will also benefit from the exercise).  The “web guide” contains links to many search engines and resources with brief descriptions of each while the “web report” has a number of exercises that asks students to search for chemical information.  The assignment is self-guided; students are encouraged to choose topic of interest t

Close Packing Activity

Submitted by George Lisensky / Beloit College on Tue, 06/28/2016 - 11:47
Description

Many extended structures can be viewed as close-packed layers of large anions, with the smaller cations fitting in between the anions. Larger holes between close-packed anions can hold cations with octahedral coordination. Smaller holes between close-packed anions can hold cations with tetrahedral coordination. The online jsmol resources show these layers and their holes.