Stoichiometric Calculations: A General Chemistry Flipped Classroom Module

Submitted by Jack Eichler / University of California, Riverside on Tue, 07/17/2018 - 12:00
Description

This is a flipped classroom activity intended for use in a first semester general chemistry course. Students are expected to have prior knowledge in determining the molar mass of compounds, how to carry out mole/gram conversions, and how to write balanced chemical reactions. The activity includes:

1) pre-lecture learning videos that guide students through carrying out basic stoichiometric calculations, determining the limiting reactant, and determining the percent yield of a reaction;

Interpreting Reaction Profile Energy Diagrams: Experiment vs. Computation

Submitted by Douglas A. Vander Griend / Calvin College on Sat, 06/23/2018 - 10:56
Description

The associated paper by Lehnert et al. uses DFT to investigate the reaction mechanism whereby a flavodiiron nitric oxide reductase mimic reduces two NO molecules to N2O. While being a rather long and technical paper, it does include several figures that highlight the reaction profile of the 4-step reaction. This LO is designed to help students learn how to recognize and interpret such diagrams, based on free energy in this case. Furthermore, using a simple form of the Arrhenius equation (eq.

Bonding and MO Theory in Flavodiiron Nitrosyl Model Complexes - Foundation Level

Submitted by James F. Dunne / Central College on Fri, 06/22/2018 - 22:31
Description

This acitivty is a foundation level discussion of the Nicolai Lehnert paper, "Mechanism of N-N Bond Formation by Transition Metal-Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases".  Its focus lies in discussing MO theory as it relates to Lewis structures, as well as an analysis of the strucutre of a literature paper.

Visual scaffold for stoichiometry

Submitted by Margaret Scheuermann / Western Washington University on Tue, 12/19/2017 - 22:18
Description

These five slides are intended to share a visual scaffolding that I developed to help my general chemistry students identify what calculations are needed to solve stoichiometry problems.

 

What is (not) inorganic chemistry?

Submitted by David Eichhorn / Wichita State University on Thu, 09/14/2017 - 10:08
Description

For twenty years, I have started my second-year Inorganic Chemistry class with a few PowerPoint slides illustrating the inorganic chemistry that is present in a number of societal areas. The point is to emphasize to the students that inorganic chemistry is present in all aspects of life. To make this process more interactive, I made "game pieces" with a topic on the front (e.g, photography or radiation protection or vitamin B12) and an area on the back (energy, materials, biology, medicine, or environment). As each student enters the class, they are asked to take one game piece.

Inorganic Nomenclature: Naming Coordination Compounds

Submitted by Gary Guillet / Furman University on Mon, 07/31/2017 - 15:23
Description

I do not like to take a large amount of time in class to cover nomenclature of any kind, though I want students to know the names of common ligands and the basic ideas of how coordination complexes are named.  Since it is a systematic topic I assign this guided inquiry worksheet.  I guess I think about it like learning rules for a new board game, sometimes you just have to play and learn as you go.  This assignment is meant to establish teh basica rules for naming by guiding students through what the needs are in naming, then it allows them to identify the convetions from a list of structur

Formulas and Nomenclature of Compounds

Submitted by Sarah Shaner / Southeast Missouri State University on Sun, 03/26/2017 - 12:41
Description

Students will be given the formula for a cation or anion on a slip of paper or index card. He or she will find another student with an ion with the opposite charge and practice writing the formula and naming the ionic compound that would result by combining the cation and anion. Students also answer a few questions about naming and formulas of binary molecular compounds with their partner.