Uses for Character Tables: IR and Raman Spectroscopy

Submitted by Kristy L. Mardis / Chicago State University on Mon, 06/27/2016 - 10:11
Description

A guided inquiry activity where students use group theory and character tables to practice determining reducible representations for all atoms and the individual bonds (like CO stretches).  The students then reduce the representation, determine which are vibrational modes, and then determine which are IR active using the character table.  For the second portion, they practice using this approach to differentiate between two metal isomers.

A Demonstration to Segue Between d to d and CT Transitions

Submitted by Marion Cass / Carleton College on Mon, 08/10/2015 - 19:21
Description

The following is a simple in-class “demonstration” that I use to segue between d to d and charge transfer transitions.  After teaching about d to d transitions and Tanabe-Sugano Diagrams, I show my students three solutions that I have put in large test tubes before class. The three solutions I place in the test tubes are:

a.  10 ml of 0.1M Co(H2O)62+

b.  10 ml of 0.1M Cu(H2O)62+

c.  10 ml of a freshly prepared 0.1 M KMnO4 solution

Five Slides about Spectroelectrochemistry (SEC)

Submitted by Kyle Grice / DePaul University on Tue, 09/23/2014 - 11:49
Description

This "Five slides about" is meant to introduce faculty and/or students to Spectroelectrochemistry (SEC), a technique that is used in inorganic chemistry research and other areas. SEC is a powerful tool to examine species that are normally hard to synthesize and isolate due to instability and high reactivity. Papers with examples of SEC techniques are provided on the last slide. 

 

Principles and imaging applications of CEST

Submitted by Justin / Northwestern University on Thu, 07/17/2014 - 15:19
Description

This five slides about chemical exchange transfer (CEST) discusses the magnetic properties of paramagnetic metal ions and their use as MR imaging agents. This includes tranditional contrast agents that affect the relaxation rate of nearby water protons and paramagnetic shift reagents suitable for CEST imaging applications. A recent redox-active cobalt complex is presented as an innovative agent for mapping redox imbalances in vivo.

5 (or 6) Slides about Biophysical Techniques

Submitted by Sheila Smith / University of Michigan- Dearborn on Wed, 07/09/2014 - 14:58
Description

This Five Slides About was prepared specifically for the 2014 IONiC/VIPEr workshop Bioinorganic Applications of Coordination Chemistry held at Northwestern University July 13-18, 2014.  

Protein Electrochemistry 3rd Bioinorganic Workshop

Submitted by Sheila Smith / University of Michigan- Dearborn on Tue, 06/10/2014 - 15:17
Description

This is a 90 minute talk by Fraser Armstrong of Oxford University (http://armstrong.chem.ox.ac.uk) explaining the electrochemistry of proteins immobilized on surfaces.  The talk was presented at the 3rd Bioinorganic Workshop in 2014 at Pennsylvania State University.  The talk contains an excellent basic tutorial on simple electron transfer on immobilized substrates using simple iron sulfur proteins as the primary example.

Molecular Orbitals of Square-Planar Tetrahydrides

Submitted by Matt Whited / Carleton College on Fri, 04/18/2014 - 10:15
Description

This in-class activity walks students through the preparation of a molecular-orbital diagram for methane in a square-planar environment.  The students generate ligand-group orbitals (LGOs) for the set of 4 H(1s) orbitals and then interact these with carbon, ultimately finding that such a geometry is strongly disfavored because it does not maximize H/C bonding and leaves a lone pair on C.

Crystal Field Theory: Analysis of the Iron Sites in Gillespite

Submitted by Zachary Tonzetich / University of Texas at San Antonio on Fri, 01/03/2014 - 17:36
Description

This in-class activity explores the electronic structure and spectroscopy of the square-planar iron(II) sites in the mineral gillespite through a crystal field theory approach. This activity is designed for an advanced inorganic chemistry course where group theory and more advanced topics in ligand field theory are taught. The activity is based on the work detailed in the paper: Burn, R. G.; Clark, M. G.; Stone, A. J. Inorg.

Understanding Hypervalency Activity

Submitted by Gerard Rowe / University of South Carolina Aiken on Mon, 11/04/2013 - 10:38
Description

This activity is meant to teach students an MO theory interpretation of hypervalency that goes beyond the simple (and somewhat unsatisfying) explanation that atoms that are in the third row and below use d-orbitals for bonding in addition to s- and p-orbitals. Specifically, students will be learning how to construct MO diagrams for multicenter bonding schemes (i.e., 3c4e).  

Molecular Structure - The Curious Case of Iron Tetracarbonyl

Submitted by Zachary Tonzetich / University of Texas at San Antonio on Thu, 06/27/2013 - 12:16
Description

This in-class activity traces the many contributions leading to the correct assignment for the solid-state structure of triiron dodecacarbonyl, [Fe3(CO)12],  with the aim of reinforcing ideas about IR spectroscopy and group theory. I give this activity to my advanced inorganic chemistry class (graduate students and senior undergrads). The activity is loosely based on the paper: Desiderato, R., Jr.; Dobson, G. R. J. Chem. Educ. 1982, 59, 752-756 and incorporates questions about symmetry and group theory for metal carbonyls.