Spectroscopy Tutorial

Submitted by Adam Johnson / Harvey Mudd College on Tue, 03/22/2011 - 23:28
Description

I just found this neat little web-based tutorial at the University of Alberta.  It goes through UV-Vis, IR and NMR.  Its coverage of IR is almost exactly what I expect my students to know.  In typical "stretch and release" fashion, I teach more, but if my students could do the practice problems on the website, I'd be happy.

The site was put together by Greg Nilsson, Enrico Fok, June Ng and Jason Cooke of the Department of Chemistry.

There are also has some great problems for multinuclear NMR.

The site has a tutorial, practice problems, and live feedback.  Way cool!

Computational Inorganic Chemistry: An Introduction

Submitted by Rebecca M. Jones / George Mason University on Wed, 03/09/2011 - 16:00
Description

The attached lecture provides a brief overview to computational methods and introduces their application to inorganic systems.  Two specific literature examples are included.  I have given this lecture in a senior level advanced inorganic chemistry class for the past 3 years.

Exploring Photographic Chemistry

Submitted by Rebecca M. Jones / George Mason University on Wed, 03/09/2011 - 15:27
Description
This set of experiments is a fun way for students to be experience interesting redox chemistry.  I have taught this series of experiments in my first semester junior level inorganic class for the past 5 years.  In part 1, students create salted paper prints with different binders.  Part 2 involves the synthesis of Prussian blue as cyanotypes are formed on paper and cloth.  In part 3, students design t

Pigment Syntheses and Qualitative Analysis

Submitted by Rebecca M. Jones / George Mason University on Wed, 03/09/2011 - 15:13
Description

This set of experiments provides an introduction to simple inorganic synthesis and qualitative analysis of inorganic pigments.  I have taught this series of experiments in my first semester junior level inorganic class for the past 5 years.  In part 1, students synthesize five inorganic pigments.  Part 2 involves identifying an unknown inorganic white pigment by chemical and physical tests.  These

The Electronic Properties of tris-(2,2'-bipyridine)-ruthenium(II) Lab Experiment(s)

Submitted by Jared Paul / Villanova University on Wed, 02/02/2011 - 19:41
Description

This is a lab experiment designed to cover an array of techniques, including metal complex synthesis, spectroscopy and electrochemistry.  Overall, the goal is to synthesize the metal complex Ru(bpy)32+, exchange the counter ion to demonstrate changes in solubility, absorbance and emission properties (including excited state quenching through energy and electron transfer, and ground state oxidation), as well as cyclic voltammetry of the complex.

The History of the 18-Electron Rule

Submitted by Sibrina Collins / College of Arts and Sciences at Lawrence Technological University on Sat, 01/22/2011 - 14:58
Description

This learning object focuses on fundamental concepts of organometallic chemistry. I use an article published in the Journal of Chemical Education (Jensen, W.B. "The Origin of the 18-Electron Rule," J. Chem. Educ.

Student Literature-Based Organometallic Lecture

Submitted by Jeffrey Rood / Elizabethtown College on Mon, 01/03/2011 - 14:42
Description
I taught an advanced inorganic chemistry course for the first time this past fall. I focused strictly on organometallic chemistry and we used Spessard and Miessler's book. Because this book is focused on transition metal organometallics, I wanted the students to appreciate some of the organometallic chemistry of the s- and p-block (and zinc). Students worked in pairs (the class size was 12) and had most of the semester to research the literature and develop a 40-50 minute lecture. I also had them develop homework questions and an in class activity to help engage the other students.

The organometallic hypertext book

Submitted by Madeleine Schultz / Queensland University of Technology on Mon, 09/06/2010 - 06:11
Description

I am sure most people already use this but I always refer to students to the Organometallic hypertext book. It has excellent explanations of topics such as back-donation in organometallic complexes.

http://www.ilpi.com/organomet/

Biological Inorganic Chemistry: Structure & Reactivity edited by Bertini, Gray, Stiefel, and Valentine

Submitted by Betsy Jamieson / Smith College on Tue, 07/20/2010 - 13:10
Description

Biological Inorganic Chemistry:  Structure & Reactivity edited by Bertini, Gray, Stiefel, and Valentine was published by University Science Books (copyright 2007). It is a detailed text divided into 2 parts.  Part A gives "Overviews of Biological Inorganic Chemistry" while Part B goes into more specifics of "Metal Ion Containing Biological Systems."  Several prominent bioinorganic chemists have contributed chapters to the book in their various areas of expertise.