Molecular Structure - The Curious Case of Iron Tetracarbonyl

Submitted by Zachary Tonzetich / University of Texas at San Antonio on Thu, 06/27/2013 - 12:16
Description

This in-class activity traces the many contributions leading to the correct assignment for the solid-state structure of triiron dodecacarbonyl, [Fe3(CO)12],  with the aim of reinforcing ideas about IR spectroscopy and group theory. I give this activity to my advanced inorganic chemistry class (graduate students and senior undergrads). The activity is loosely based on the paper: Desiderato, R., Jr.; Dobson, G. R. J. Chem. Educ. 1982, 59, 752-756 and incorporates questions about symmetry and group theory for metal carbonyls.

Collaborative Team Competition for Identification of Symmetry Operations on (Paper) Models

Submitted by Sophia E. Hayes / Washington University on Thu, 06/27/2013 - 08:18
Description

Students work individually, then compete in teams, to identify symmetry elements and operations present in a high-symmetry structure, such as an octahedron or tetrahedron (without showing the character table until the end of the activity).  Students often  visualize symmetry elements differently from one another.  Creating teams, allows them to work collaboratively, and the competition adds an incentive for finding the most elements.  Since some students are better at seeing some symmetry elements (and operations) than others, it allows for them to work in small groups to both teach and lea

Literature summary through student presentation - free choice of topic.

Submitted by Cameron Gren / University of North Alabama on Wed, 06/26/2013 - 07:59
Description

(1) Student choses and reads a journal article of his/her choice that is related to a topic we have discussed during the semester. (i.e. atomic structure, MO theory, group theory, solid state structure, band theory, coordination chemistry, organometallics, catalysis). Suggested journals include, but are not limited to JACS, Inorg. Chem., Organometallics, Angew. Chem., JOMC, Chem. Comm.)

(2) Student answers the following questions regarding their chosen article:

    (a) Describe, in 1 or 2 sentences the goal of this work. 

Chimera - A Molecular Modeling Program

Submitted by Walter Flomer / St. Andrew's University on Wed, 06/26/2013 - 06:54
Description

Chimera is a program for interactive visualization and analysis of molecular structures and related data, including density maps, supramolecular assemblies, sequence alignments, docking results, trajectories, and conformational ensembles. High-quality images and animations can also be generated. Chimera includes documentation and tutorials, and can be downloaded free of charge for academic, government, non-profit, and personal use. Chimera was developed at UCSF and was funded by the National Institute of Health.

Symmetry, Group Theory, and Computational Chemistry

Submitted by Joanne Stewart / Hope College on Mon, 06/24/2013 - 22:46

These Learning Objects were used in an advanced undergraduate chemistry course that used computational chemistry as an integrative tool to help students deepen their understanding of structure, bonding, and reactivity and practice their integrative expertise by addressing complex problems in the literature and in their own research.

Lattice Systems Origami

Submitted by Jeremiah / Plymouth State University on Mon, 06/24/2013 - 10:31
Description

Covers the geometries and symmetries of the seven crystal systems in an inquiry-based manner. 2-D paper templates are provided, which the students cut out, fold, and tape together to create 3-D representations of the seven crystal systems: triclinic, monoclinic, orthorhombic, tetragonal, rhombohedral, hexagonal, and cubic. The students can then use these to determine the geometries and symmetries of the systems for themselves.

Student Led Point Group Determinations

Submitted by John Lee / University of Tennessee Chattanooga on Tue, 06/18/2013 - 09:43
Description

All chemistry is learned best by "doing," and I believe this is especially true for determining molecular symmetry.  This activity was designed to end a three-part lecture/activity on symmetry and point groups for my advanced inorganic class.  I call this unit on symmetry a lecture/activity series because it was designed to be student-guided learning and requires the students to teach each other how to determine a molecular point group.  I only gave one formal lecture on symmetry and point groups, which was followed by the symmetry scavenger hunt activity LO.  Finally this assignment was do

[RuH(NO3)(CO)2(PPh3)2]: An analysis of the literature

Submitted by Chip Nataro / Lafayette College on Thu, 05/16/2013 - 18:47
Description

The original description of the synthesis of [RuH(NO3)(CO)2(PPh3)2 appears in Inorg. Chem. (Critchlow, P. B.; Robinson, S. D. Inorg. Chem. 1978, 17, 1896). There are eight possible structures for this octahedral isomer (including two sets of enantiomers). Students are shown one of the structures and asked to draw the remaining seven. The authors analyze the spectroscopic data obtained for the compound in order to determine which isomer formed. Unfortunately, there was an error in the analysis.

A DFT Study of Metal Pentacarbonyls

Submitted by Sibrina Collins / College of Arts and Sciences at Lawrence Technological University on Thu, 05/09/2013 - 16:57
Description

Metal carbonyls are the most widely studied organometallic complexes.  This exercise uses Gaussian with the GaussView interface to investigate the role of the metal centers on backbonding to the CO ligand. Density Functional Theory (DFT) methods were used to evaluate two classic metal pentacarbonyls, namely Fe(CO)5 and Ru(CO)5.

 

MO Theory for Organometallic Compounds: Pentalene

Submitted by Zachary Tonzetich / University of Texas at San Antonio on Thu, 04/11/2013 - 16:54
Description

This is an in-class exercise for upper level inorganic students designed to highlight aspects of symmetry, group theory, MO theory, and Hückel theory. The exercise is an expansion of a Problem Set question I give to my Advanced Inorganic Chemistry class. In this activity, students will develop the MO diagram for the π system of the pentalene dianion using the Hückel approach. They will then consider the effect of folding the ring system using a Walsh diagram.