Advanced Inorganic Chemistry

Submitted by Deborah Polvani / Washington & Jefferson College on Mon, 06/12/2023 - 09:18
Description

This course will explore many of the fundamental principles of inorganic chemistry, with significant emphasis on group theory, molecular orbital theory, angular overlap theory, coordination chemistry, organometallic chemistry, and bio-inorganic chemistry. Specific topics will vary, but will generally include coverage of atomic structure, simple bonding theory, donor-acceptor chemistry, the crystalline solid state, coordination compounds and isomerism, electronic and infrared spectroscopy applied to inorganic complexes, substitution mechanisms, and catalysis.

SLiThEr #48: Teaching Organometallic Chemistry to Undergraduates

Submitted by Chip Nataro / Lafayette College on Fri, 05/05/2023 - 07:49
Description

The second in a series on teaching advanced topics to undergraduates, the SLiThEr focuses on organoMetallic chemistry. While the primary framework for the discussion is my senior level course, there is plenty of great content from the live participants.

Can donor ligands make Pd(OAc)2 a stronger oxidant? (Stahl)

Submitted by Sarah Shaner / Southeast Missouri State University on Mon, 03/20/2023 - 15:29
Description

This Literature Discussion LO was created for the 2023 ACS Inorganic Chemistry Award Winners collection. Professor Shannon Stahl was the recipient of the 2023 Organometallic Chemistry Award. This LO is based on a recent paper from the Stahl group entitled "Can Donor Ligands Make Pd(OAc)2 a Stronger Oxidant? Access to Elusive Palladium(II) Reduction Potentials and Effects of Ancillary Ligands via Palladium(II)/Hydroquinone Reox Equilibria" published in J. Am. Chem. Soc. 2020, 142, 19678-19688.

Phosphate Reduction by Mechanochemistry (Cummins)

Submitted by Kyle Grice / DePaul University on Fri, 01/13/2023 - 11:15
Description

This Literature Discussion LO was created for the ACS Inorganic Chemistry Award Winners. Dr. Kit Cummins was the recipient of the 2023 Frederick Hawthorne Award in Main Group Inorganic Chemistry. This LO is based on a recent paper from the group of Dr. Cummins, entitled "Sustainable Production of Reduced Phosphorus Compounds: Mechanochemical Hydride Phosphorylation Using Condensed Phosphates as a Route to Phosphite", published in ACS Central Science20228, 332-339.

Nickel-catalyzed Hydrodefluorination

Submitted by Chip Nataro / Lafayette College on Wed, 08/24/2022 - 12:29
Description

This paper describes the use of a  catalytic nickel system for the hydrodefluorination of aryl amides. While organofluorine compounds are extremely useful because of their unique properties, there are growing concerns about the impact of these compounds on the environment. Carbon-fluorine bonds are extremely strong, and so getting them to react is a significant challenge for chemists.

Inorganic Chemistry

Submitted by Abdul K. Mohammed / North Carolina Central University on Tue, 08/23/2022 - 16:51

Hydrogenative Depolymerization of Nylons

Submitted by Chip Nataro / Lafayette College on Tue, 08/23/2022 - 13:46
Description

This paper describes work from the Milstein group in which ruthenium catalysts with pincer ligands are used to depolymerize nylons by breaking the C-N bond and hydrogenating the resulting products to amines and alcohols. Waste plastic is a serious environmental concern that needs a solution. Organometallic chemists put significant effort into finding ways to convert monomers into polymers, and now we must figure out ways to do the reverse.

Inorganic Chemistry SC356

Submitted by Shirley Lin / United States Naval Academy on Fri, 08/12/2022 - 12:02
Description

From the course catalog: The chemistry of the Main Group elements and the transition metals are studied with emphasis on the properties, structures, and reactivities of these elements and their compounds.

 

Introductory Inorganic Chemistry

Submitted by Nerissa Lewis / Seattle Pacific University on Wed, 06/29/2022 - 00:35
Description

A systematic study of chemical principles as applied to inorganic systems. This class consist of a 3 hour lecture and a 4 hour lab. Special emphasis is placed on group theory and the use of molecular orbital, ligand field, and crystal field theories as tools to understanding the structure and reactivity of inorganic compounds.