Demonstration on tempering of iron

Submitted by Lee Park / Williams College on Sat, 06/25/2011 - 15:01
Description

This is a simple and quick demonstration of the process oftempering of a solid, and the dramatic

Student-Directed Explorations to teach about ligands

Submitted by Marion Cass / Carleton College on Sat, 06/25/2011 - 14:43
Description

Several years ago I began using a set of Ligand-of-the-Week exercises in my Inorganic course to encourage (force) students to go outside of our textbook and into the chemical reference materials and chemical literature to find examples of ligands that bind to metal ions. My motivation was to get my students to see the wonderful breadth of known metal-ligand complexes and to develop skills associated with analyzing and classifying ligands. My original paper is fairly complete and can be accessed via J. Chem. Educ. which is now available through the ACS website.

Understanding phase diagrams of solid state alloys: Application to archeological studies

Submitted by Lee Park / Williams College on Sat, 06/25/2011 - 13:43
Description
This paper from the Journal of Archeological Science describes the analysis of silver-copper artifacts found in Machu Picchu.  The archeological samples were compared to various control samples prepared from different compositions and under varying processing (thermal treatment) conditions.  Using analytical methods (mechanical hardness testing, micrographic analysis of microstructure and morphology, elemental analysis), researchers were able to offer hypotheses concerning the source materials and fabrication methods used by Inca artisans.

Macroscopic, particle and symbolic representations of aqueous reactions

Submitted by Kristen Murphy / University of Wisconsin-Milwaukee on Sat, 06/25/2011 - 13:32
Description

Students in the courses I teach (primarily general chemistry) have struggled with understanding the three representations of matter: macroscopic, particle, and symbolic. This is particularly evident when these representations extend into reactions. Additionally, students struggle with understanding basic concepts of aqueous solutions and, by extension, reactions in aqueous solution. This activity is designed to help the students recognize different types of representations and then generate these for simple systems.

Geochronology: radiocarbon dating

Submitted by mike knapp / UMASS on Sat, 06/25/2011 - 10:59
Description

This is written for a freshman seminar course, "Nuclear Chemistry and Medicine," open to all majors.  It meets once per week for one hour, and is meant to facilitate the transition into college for first-year students by providing an informal educational experience. It should be adaptable to a lecture-format course, and I will try to do this for my Junior-year Inorganic Chemistry. 

Catalysis using functionalized mesoporous silica

Submitted by Randall Hicks / Wheaton College on Wed, 05/25/2011 - 10:30
Description

This paper, while not fundamentally groundbreaking, serves as a nice introduction to the field of mesoporous materials. I like that it covers synthesis, characterization, and an application of the materials. I have used this paper in our senior seminar course as the basis for discussion of this area of chemistry. Discussion questions cover aspects of sol-gel chemistry, powder diffraction, gas adsorption, IR, solid state NMR, UV-Vis, and catalysis.  

Pigment Syntheses and Qualitative Analysis

Submitted by Rebecca M. Jones / George Mason University on Wed, 03/09/2011 - 15:13
Description

This set of experiments provides an introduction to simple inorganic synthesis and qualitative analysis of inorganic pigments.  I have taught this series of experiments in my first semester junior level inorganic class for the past 5 years.  In part 1, students synthesize five inorganic pigments.  Part 2 involves identifying an unknown inorganic white pigment by chemical and physical tests.  These

Student Literature-Based Organometallic Lecture

Submitted by Jeffrey Rood / Elizabethtown College on Mon, 01/03/2011 - 14:42
Description
I taught an advanced inorganic chemistry course for the first time this past fall. I focused strictly on organometallic chemistry and we used Spessard and Miessler's book. Because this book is focused on transition metal organometallics, I wanted the students to appreciate some of the organometallic chemistry of the s- and p-block (and zinc). Students worked in pairs (the class size was 12) and had most of the semester to research the literature and develop a 40-50 minute lecture. I also had them develop homework questions and an in class activity to help engage the other students.

First Isolation of the AsP3 Molecule

Submitted by Anne Bentley / Lewis & Clark College on Fri, 09/03/2010 - 13:47
Description

Early in 2009, Christopher Cummins’ group at MIT reported (in Science) the synthesis of AsP3, a compound that had never been isolated at room temperature.  Later that year, a full article was published in JACS comparing the properties and reactivity of AsP3 to those of its molecular cousins, P4 and As4.  The longer article is full of possibilities for discussion in inorganic chemistry courses, with topics including periodic trends, NMR, vibrational spectroscopy, electrochemistry, molecular orbital theory, and coordination chemistry.

Towards "Personalized Solar Energy": An Inexpensive Oxygen-Evolving Catalyst

Submitted by Anne Bentley / Lewis & Clark College on Fri, 08/27/2010 - 15:54
Description

In the two years since this article was published, it has jump-started a large amount of research in the area of cobalt-based catalysts for solar water splitting.  The paper describes the electrochemical synthesis and oxygen-evolution capabilities of a Co-phosphate catalyst under very mild conditions.  The paper can stimulate discussion of many topics found in the inorganic curriculum, including electrochemistry, semiconductor chemistry, transition metal ion complex kinetic trends, and solid state and electrochemical characterization techniques.