The Synthesis and Characterization of Cobalt Spinels

Submitted by Rebecca / The Ohio State University on Tue, 06/25/2013 - 21:19
Description

In this lab, students will use solid-state methods to synthesize cobalt and chromium spinels, ZnCr2O4, ZnCo2O4, CoAl2O4, and CoCr2O4. They will (1) characterize their structure with X-ray powder diffraction (XRD) and (2) characterize the color using UV-Vis diffuse reflectance spectroscopy.

Trends in Measured Redox Potentials and Computed Molecular Orbital Energies of Derivatized Buckminsterfullerenes

Submitted by Robert Q. Topper / Cooper Union on Tue, 06/25/2013 - 01:55
Description

In this project students are asked to reproduce published calculations of molecular orbital energies of a series of derivatized fullerenes and correlate them with published reduction and oxidation potentials obtained from cyclic voltammetry. The particular subset of the derivatives to be studied are chosen by the student and this choice is part of the learning activity. The students then carry out additional calculations using other theoretical models to see whether they improve the correlation between computed and experimental properties.

Band Structures, Electronic and Optical Properties of Metals, Semiconductors, and Insulators

Submitted by Maggie Geselbracht / Reed College on Tue, 06/25/2013 - 00:32

I created this Collection of Learning Objects (LOs) at the IONiC VIPEr TUES 2013 Workshop: Solid State Materials for Alternative Energy Needs held at Penn State University.  The overall theme of the Collection is electronic and optical properties of metals, semiconductors, and insulators.  Most of the learning objects either require knowledge of or explicitly refer to band structures, either at a basic level or a more advanced level.  Some LOs also deal with extended structures, un

Online Courses Directory

Submitted by Adam Johnson / Harvey Mudd College on Mon, 04/01/2013 - 07:41
Description

This website is a free and comprehensive resource that is a collection of open college courses that spans videos, audio lectures, and notes given by professors at a variety of universities. The website is designed to be friendly and designed to be easily accessed on any mobile device.

Exploring the Nanoworld Innovating through Materials from the University of Wisconsin Madison

Submitted by Patricia Stan / Taylor University on Thu, 07/19/2012 - 13:29
Description

This is a great web resource for all types of nano materials.  There are lesson plans, demos, activites, labs and lots of background information.  It is very easy to navigate and there are videos of the labs so you can see each step - very useful when doing a type of synthesis or technique new to you.

Colored Note Cards as a Quick and Cheap Substitute for Clickers

Submitted by Chris Bradley / Mount St. Mary's University on Tue, 07/17/2012 - 10:23
Description

For many years I have resisted using clickers, mainly because at our university there is no standard universal clicker. I wanted to keep student costs as low as possible but also desired the type of live feedback during a lecture that clicker questions can provide. In both my general chem. (200-300 students) and upper division courses (50-75 students), I now pass out 4 or 5 colored notecards on the first day of class and make sure everyone has one of each color.

Polypropylene Stereochemistry and Identification by 13C NMR Spectroscopy

Submitted by Shirley Lin / United States Naval Academy on Mon, 07/16/2012 - 11:55
Description

These 6 slides introduce the nomenclature used to describe the stereochemistry of various polypropylenes (PPs) that can be synthesized by metallocene-catalyzed polymerizations. Although PP is the specific polymer discussed, the nomenclature applies to other alpha-olefin polymerizations.

Solubility and the Need for Bioinorganic Metal Ion Transport and Storage

Submitted by Sheila Smith / University of Michigan- Dearborn on Mon, 07/16/2012 - 09:42
Description

 

This is an in class exercise that I use to emphasize the need for metal ion transport and storage in biochemistry.  Applying the Van't Hoff equation to the Ksp value at 25°C for ferric hydroxide, students calculate the iron concentration at which ferric hydroxide would begin to precipitate out in the blood.  It' s an interesting problem that requires very little math beyond that used in gen chem, and the answer is in stark contrast to the amount of iron that we actually store in our bodies.  

Marie Curie

Submitted by mike knapp / UMASS on Sun, 06/26/2011 - 10:10
Description

This is written for a freshman seminar course, "Nuclear Chemistry and Medicine," open to all majors.  It meets once per week for one hour, and is meant to facilitate the transition into college for first-year students by providing an informal educational experience.