VIPEr Fellows 2019 Workshop Favorites
During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
Guided reading and in-class discussion questions for "High-Spin Square-Planar Co(II) and Fe(II) Complexes and Reasons for Their Electronic Structure."
This Literature Discussion is based on the article “Square-planar Co(III) {O4} coordination: large ZFS and reactivity with ROS” by Linda Doerrer et. al.
This course covers fundamentals of central topics in inorganic chemistry from historical to modern-day perspectives. Topics include: coordination compounds (history, structure, bonding theories, reactivity, applications); solid state chemistry (crystals, lattices, radius ratio rule, defect structures, silicates & other minerals); and descriptive chemistry of the elements.
I have had some students in class have a hard time identifying colors (flame tests, solution color, acid-base indicators, etc.) because of a visual impairment. There are many cell-phone apps that are helpful in aiding these students. "Pixel Picker" allows the students to load a picture from a device (cell phone, ipad). This is helpful because students are now dealing with a "frozen" image. Moving the cross-hair to different parts of the picture changes the R-G-B values. The "Color Blind Pal" app uses a more qualitative approach.
This is the fifth in a series of exercises used to teach computational chemistry. It has been adapted, with permission, from a Shodor CCCE exercise (http://www.computationalscience.org/ccce). It uses the WebMO interface for drawing structures and visualizing results. WebMO is a free web-based interface to computational chemistry packages (www.webmo.net).
MIT OpenCourseWare has a great series of videos explaining (synthetic) lab techniques
An introduction to modern inorganic chemistry, including a description of transition- metal complexes and their role as catalysts, and a survey of the reactivity of selected elements of the main group. Three-hour lecture, three-hour laboratory
Introduces students to a broad overview of modern inorganic chemistry. Included are considerations of molecular symmetry and group theory, bonding and molecular orbital theory, structures and reactivities of coordination compounds, organometallic chemistry, catalysis and transition metal clusters. Laboratory experiences will include the measurement of several important features of coordination compounds, such as their electronic spectra and paramagnetism, as well as the synthesis and characterization of organometallic compounds.
This is the full literature discussion based on a communicaiton (J. Am. Chem. Soc. 2011, 133, 9278). This paper describes a redox-switch yttrium catalyst that is an active catalyst for the polymerization of L-lactide in the reduced form and inactive in the oxidized form. The catalyst contains a ferrocene-based ligand that serves as the redox active site in the catalyst. This full literature discussion is an extension of the one figure literature discussion that is listed below.