Organic Nomenclature Active Learning Worksheet

Submitted by Shirley Lin / United States Naval Academy on Sun, 06/26/2016 - 15:22
Description

This worksheet was designed to give students an introduction to organic chemistry nomenclature with a more active experience than listening to a faculty member present all the rules for how to name alkanes and cycloalkanes. The pedagogical approach is one introduced to me by Dr. Melonie Teichert; we refer to it as ICC (Inventing through Contrasting Cases). The theoretical framework involves the premise that students will learn and retain more of the learning if they're not simply told the "answer" but if they attempt to generate an answer for themselves based upon a data set.

George Stanley Organometallics

Submitted by Adam Johnson / Harvey Mudd College on Fri, 06/10/2016 - 14:53

This is an LO for the collection of organometallics LOs by George Stanley. Adam Johnson is curating the material that was written by George.

For many years, George hosted his organometallics lecture notes, powerpoint slides, and handouts, on his personal website at LSU. He always wanted that material available to the public. Recently, they moved to a CMS and that material is no longer available. Adam is working with George to get the 2016-2017 version of his materials up on VIPEr for everyone to use.

The lecture notes are freely available to all.

soapmaking lecture/demo

Submitted by Adam Johnson / Harvey Mudd College on Sat, 05/14/2016 - 22:26
Description

This is a short presentation that outlines the major chemical reactions of soapmaking. Included are instructions for making two soaps, one from canola oil, the other from coconut oil. These two soaps have very different hardnesses, which can be explained by examining the structures of the oils. If you have never made soap before, it isn't that difficult, but it does use concentrated NaOH so is very caustic before the reaction is done. The linked websited have good instructions for soapmaking as well.

Antibacterial Reactivity of Ag(I) Cyanoximate Complexes

Submitted by Kari Young / Centre College on Sat, 08/22/2015 - 14:09
Description

In this experiment, students will synthesize and characterize one of three Ag(I) cyanoximate complexes as potential antimicrobial agents for use in dental implants. This experiment combines simple ligand synthesis, metalation and characterization, and a biomedical application. The complexes are both air and light stable.

Literature Introduction to Coordination Complexes

Submitted by Anne Bentley / Lewis & Clark College on Wed, 01/28/2015 - 16:21
Description

Students are asked to find a coordination complex in the recent literature and analyze its structure. This homework or in-class activity is a great way for the instructor to crowd source the discovery of interesting new complexes to use as material in future exams.

Introduction to Mercury

Submitted by Anthony L. Fernandez / Merrimack College on Thu, 01/22/2015 - 20:57
Description

In this exercise, students are introduced to Mercury, a program for visualizing and analyzing crystal structure data.  Students are guided through opening the program for the first time and viewing a structure from the Teaching Subset, a selection of structures from the Cambridge Crystallographic Database (CSD). Activites include changing the representation of the complex, moving the structure around the window, accessing information about the structure, and measuring bond lengths and angles within the structure.

Maggie's LOs

Submitted by Chip Nataro / Lafayette College on Fri, 09/12/2014 - 17:25

Cobalt Schiff Base Zinc Finger Inhibitors

Submitted by Peter Craig / McDaniel College on Thu, 07/17/2014 - 13:08
Description

This is a literature discussion based on the paper “Spectroscopic Elucidation of the Inhibitory Mechanism of Cys2

Having fun with your own molecular models

Submitted by Arpita Saha / Georgia Southern University on Wed, 07/16/2014 - 15:04
Description

This is a fun chemistry project where students make model compounds to learn various structural aspects of the compound. This is an individual project that is each student is assigned with one compound.  They can use any item (for e.g. Styrofoam balls etc) to make their very own model compound. The model should contain all the atoms (visually distinctive), bonds, lone pairs. Student is expected to create something novel rather using molecular model kit. They can use text book and lecture material for the resources.