Advanced Inorganic Chemistry
A one-semester study of advanced topics in inorganic chemistry with emphasis on structure and bonding, transition metal chemistry, organometallic and solid-state chemistry.
A one-semester study of advanced topics in inorganic chemistry with emphasis on structure and bonding, transition metal chemistry, organometallic and solid-state chemistry.
This course will emphasize the fundamental concepts needed to understand the diverse chemistry of all the elements of the periodic table. The common theme for the entire course will be Structure and Bonding. The primary focus will be inorganic molecules, ions and solids, but the concepts we will discuss are applicable to all aspects of chemistry. The first two-thirds of the course will cover theories of bonding in molecules and solids along with some background in symmetry and structure.
A collection of all of the IONiC VIPEr NanoCHAts. These are short discussion on a teaching topic by 4-5 faculty members from different institutions. Each of these events is recorded and posted to the IONiC VIPEr YouTube Channel.
This is the link to the first SLiThEr (Supporting Learning with Interactive Teaching: a Hosted, Engaging Roundtable), presented by Kyle Grice and Hosted by Chip Nataro. The SLiThEr was recorded and posted on YouTube (see the web resources link).
These are two "Livescribe Pencasts" I have used for inorganic chemistry. I made them with an Echo 2 Livescribe pen for my 10-week Junior/Senior Inorganic chemistry course. We teach with MFT and I use these as supplemental materials outside of class (both for f2f and online versions of this class).
In this paper (Llewellyn, Green and Cowley, Dalton Trans. 2006, 4164-4168) the synthesis and characterization of two cobalt compounds with an N-heterocyclic carbene ligand (IMes) are reported. the first, [Co(CO)3(IMes)Me] was prepared by the reaction of [Co(CO)3(PPh3)Me] with IMes. The second compound, [Co(CO)3(IMes)COMe] is formed by the addition of Co to the first.
This paper (Gayen, F.R.; Ali, A.A.; Bora, D.; Roy, S.; Saha, S.; Saikia, L.; Goswamee, R.L. and Saha, B. Dalton Trans. 2020, 49, 6578) describes the synthesis, characterization and catalytic activity of a copper complex with a ferrocene-containing Schiff base ligand. The article is relatively short but packed with information. However, many of the details that are assumed knowledge in the article make for wonderful questions some of which I hope I have captured.
This guided inquiry activity takes students through the process of constructing an MO diagram for square planar methane. LGOs are constructed using a graphical approach. Students are guided through a process that allows them to use their MO diagram to make a claim about chemical properties.
This guided inquiry activity takes the students through the whole process of constructing an MO diagram for water in detail. The LGOs are constructed using my graphical approach (linked below) and hybrid orbital formation is discussed. Along the way, students are given hints on what to think about when constructing an MO diagram.
I created this activity as a way to get the class involved in creating new, fun ways to teach course concepts (selfishly- that part is for me) and for students to review concepts prior to the final exam (for them). Students use a template to create a 15-20 min activity that can be used in groups during class to teach a concept we have learned during the semester. We then randomly assign the activities and students work in groups to complete them and provide feedback.
The benefits are twofold: