Introduction to Inorganic Chemistry
Inorganic chemistry is a branch of synthetic chemistry typified by its focus on compounds composed of elements other than carbon and hydrogen. But don’t let that fool you!
Inorganic chemistry is a branch of synthetic chemistry typified by its focus on compounds composed of elements other than carbon and hydrogen. But don’t let that fool you!
This worksheet was designed as an in-class, group activity in a flipped classroom. It relies on an understanding of the octet rule and common charges of various elements, as well as basic nomenclature of ionic compounds. The worksheet teaches students to balance simple redox reactions (in which only the oxidized and reduced atoms are present) by identifying half-reactions, counting electrons transferred, and multiplying half-reactions to "cancel" electrons.
This is a worksheet designed for a flipped-classroom, in-class activity during the first course in our chemistry sequence. It teaches the basics of Molecular Orbital Theory from a semi-qualitative standpoint, by showing the constructive and destructive overlap of s-orbital "wavefunctions." The activity illustrates the formation of the bonding and antibonding molecular orbitals in H2, shows its molecular orbital diagram, and introduces the concept of bond order.
This literature discussion shows how serious inorganic chemistry topics can related to cultural heritage problems. The paper is pretty dense in EPR and UV/Vis spectroscopy, but the questions don't go in super great depth on those topics instead focusing on the problem, the main findings, structures and the experiment design, with some additional questions about the spectroscopy.
This course will emphasize the fundamental concepts needed to understand the diverse chemistry of all the elements of the periodic table. The common theme for the entire course will be Structure and Bonding. The primary focus will be inorganic molecules, ions and solids, but the concepts we will discuss are applicable to all aspects of chemistry. The first two-thirds of the course will cover theories of bonding in molecules and solids along with some background in symmetry and structure.
A collection of all of the IONiC VIPEr NanoCHAts. These are short discussion on a teaching topic by 4-5 faculty members from different institutions. Each of these events is recorded and posted to the IONiC VIPEr YouTube Channel.
This In-Class Activity Learning Object explores a series of uranyl, UO
This study guide/question set will help a student navigate through the related research paper and test the student's understanding on the effects of hydrogen bonding in synthetic Cu-O2 adducts in the realm of bioinorganic model chemistry.
The discussion covers a 2021 publication by the Chirik group (Nature Chemistry, 2021, DOI: 10.1038/s41557-020-00614-w) which details the discovery of a new way to polymerize butadiene through iron-catalyzed [2+2] cycloadd
This is the seventh SLiThEr () in the series. In this presentation/discussion, Dr. Shirley Lin explains how she used a literature discussion with students to assess their learning and knowledge. This was for a upper-division senior seminar course. In particular, she discusses questions at various levels of Bloom's Taxonomy. She also explains how to use concepts from Chemical Education Research to really dig down and assess student knowledge.