Introduction to Photoinduced Electron Transfer

Submitted by Robert Holbrook / Northwestern University on Thu, 07/17/2014 - 17:37
Description

This 5 slides about will introduce students to the concept of photoinduced electron transfer. These slides go over the energics of photoinduced electron transfer, which implements basic concepts of photochemistry and electrochemistry. The photoinduced electron transer properties of ris-(2,2'-bipyridine)-ruthenium(II) is used as an example. 

Modeling post-translational modification in cobalt nitrile hydratase with a metallopeptide from Anne Jones

Submitted by Kari Young / Centre College on Thu, 07/17/2014 - 16:23
Description

In this literature discussion, students read a paper about a cobalt metallopeptide that imitates the active site of the enzyme nitrile hydratase.  Specifically, the model complex is oxidized by air to produce a coordination sphere with both cysteine thiolate and sulfinic acid ligands, much like the post-translationally oxidized cysteine ligands in the biological system.

Cobalt Schiff Base Zinc Finger Inhibitors

Submitted by Peter Craig / McDaniel College on Thu, 07/17/2014 - 13:08
Description

This is a literature discussion based on the paper “Spectroscopic Elucidation of the Inhibitory Mechanism of Cys2

The Synthesis and Characterization of a trans-Dioxorhenium(V) Complex

Submitted by Sibrina Collins / College of Arts and Sciences at Lawrence Technological University on Mon, 07/14/2014 - 12:31
Description

This experiment involves the preparation of a key starting reactant in high purity and yield for an ongoing research project, specifically for the development of potential photodynamic therapy (PDT) agents. The students synthesize [ReO2(py)4]Cl.2H2O using standard inorganic synthesis techniques. The students visualize the vibrations and electronic properties (e.g. molecular orbitals) of the compound using output files generated from density functional theory (DFT).

Inorganic Spectroscopy Introduced Using an Interactive PhET Simulation (Part 2)

Submitted by Alycia Palmer / The Ohio State University on Mon, 07/14/2014 - 09:06
Description

This is the second part of a two-day class discussion on molecular and inorganic spectroscopy. In this activity, upper level students learn about spectroscopic tecniques used in inorganic chemistry and then devise an experiment to follow the progress of a hypothetical reaction. The activity also prepares students for the inorganic laboratory "Linkage isomerism of nitrogen dioxide" in which infrared spectroscopy is used to monitor changes to the N-O vibrational stretch upon coordination to a metal.

Practical MCD Tutorial- How to collect MCD Data- Lehnert Lab

Submitted by Sheila Smith / University of Michigan- Dearborn on Thu, 07/10/2014 - 11:32
Description

Nicolai Lehnert's group recently shared this video they made for the Penn State Bioinorganic Workshops on Youtube.  This is a great practical demonstration of how MCD data is actually collected.

5 (or 6) Slides about Biophysical Techniques

Submitted by Sheila Smith / University of Michigan- Dearborn on Wed, 07/09/2014 - 14:58
Description

This Five Slides About was prepared specifically for the 2014 IONiC/VIPEr workshop Bioinorganic Applications of Coordination Chemistry held at Northwestern University July 13-18, 2014.  

Dissecting Catalysts for Artificial Photosynthesis

Submitted by Anne Bentley / Lewis & Clark College on Mon, 07/07/2014 - 13:57
Description

Anne asked the students in her junior/senior inorganic course to develop their own literature discussion learning objects and lead the rest of the class in a discussion of their article.  Each student chose one article from a list of suggestions provided.  Student Hayley Johnston chose this article describing a Mn-containing catalyst for carbon dioxide reduction (Jonathan M. Smieja, Matthew D. Sampson, Kyle A. Grice, Eric E. Benson, Jesse D. Froehlich, and Clifford P.

A Jablinko game to promote learning of excited state transitions

Submitted by Alycia Palmer / The Ohio State University on Wed, 06/11/2014 - 09:48
Description

The in-class game Jablinko was designed to make learning excited state transitions fun. To play, a student chooses an excited state by placing a game chip at the top of the board, then the chip can “vibrationally cool” by bouncing through the pegs, and finally “transition” to a lower energy state in the bottom row. The students then compete to be the first to name the transition (e.g. S1 to T1 is called intersystem crossing).

Inorganic Spectroscopy Introduced Using an Interactive PhET Simulation (Part 1)

Submitted by Alycia Palmer / The Ohio State University on Wed, 04/30/2014 - 20:49
Description

A guided-inquiry activity for the interactive PhET simuation "Molecules and Light" was created to introduce upper-level inorganic laboratory students to inorganic spectroscopy. The activity included here is the first part of a two-day discussion. This activity instructs students to use the PhET simulation "Molecules and Light" to explore how various molecules interact with different energies of electromagnetic radiation (microwave, infrared, visible, ultraviolet). This activity can also be used in a general chemistry setting as the topics discussed are very basic.