A Living Syllabus for Sophomore Level Inorganic Chemistry

Submitted by Sheila Smith / University of Michigan- Dearborn on Mon, 08/04/2014 - 16:02
Description

In my sophomore level inorganic course, I have experimented with the idea of a living syllabus as a way to develop my own specific learning objectives and to help the students connect the material to the tasks that will be expected of them in assessing their learning. 

Student choice literature-based take home exam question

Submitted by Hilary Eppley / DePauw University on Fri, 01/24/2014 - 15:27
Description

During my junior/senior level inorganic course, we did several guided literature discussions over the course of the semester where the students read papers and answered a series of questions based on them (some from this site!).  As part of my take home final exam, I gave the students an open choice literature analysis question where they had the chance to integrate topics from the semester into their interpretation of a recent paper of their own choice from Inorganic Chemistry, this time with limited guidance.

Five Slides about X-ray Photoelectron Spectroscopy (XPS)

Submitted by Sophia E. Hayes / Washington University on Fri, 06/28/2013 - 09:35
Description

This is a short presentation giving an overview of x-ray photoelectron spectroscopy (XPS), meant to be an introduction for those who are unfamiliar with the technique.

Synthesis and Characterization of Magnetic Spinel Nanoparticles

Submitted by Anne Bentley / Lewis & Clark College on Wed, 06/26/2013 - 22:15
Description

This learning object centers around an article published fairly early on in the history of nanoscience (Sun, et al. “Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles” J. Am. Chem. Soc. 2004, 126, 273-279.

Literature summary through student presentation - free choice of topic.

Submitted by Cameron Gren / University of North Alabama on Wed, 06/26/2013 - 07:59
Description

(1) Student choses and reads a journal article of his/her choice that is related to a topic we have discussed during the semester. (i.e. atomic structure, MO theory, group theory, solid state structure, band theory, coordination chemistry, organometallics, catalysis). Suggested journals include, but are not limited to JACS, Inorg. Chem., Organometallics, Angew. Chem., JOMC, Chem. Comm.)

(2) Student answers the following questions regarding their chosen article:

    (a) Describe, in 1 or 2 sentences the goal of this work. 

Band Structures, Electronic and Optical Properties of Metals, Semiconductors, and Insulators

Submitted by Maggie Geselbracht / Reed College on Tue, 06/25/2013 - 00:32

I created this Collection of Learning Objects (LOs) at the IONiC VIPEr TUES 2013 Workshop: Solid State Materials for Alternative Energy Needs held at Penn State University.  The overall theme of the Collection is electronic and optical properties of metals, semiconductors, and insulators.  Most of the learning objects either require knowledge of or explicitly refer to band structures, either at a basic level or a more advanced level.  Some LOs also deal with extended structures, un

Online Courses Directory

Submitted by Adam Johnson / Harvey Mudd College on Mon, 04/01/2013 - 07:41
Description

This website is a free and comprehensive resource that is a collection of open college courses that spans videos, audio lectures, and notes given by professors at a variety of universities. The website is designed to be friendly and designed to be easily accessed on any mobile device.

Solid State Models with ICE Solid State Model Kits

Submitted by Nicole Crowder / University of Mary Washington on Mon, 01/07/2013 - 15:56
Description

In this in-class activity, students are broken up into teams of 4, which are then sub-divided into two teams of two for the building of the structures. The activity makes use of the ICE Solid State Model kits, and each group should have their own full kit.

The activity has 6 sets of structures for the teams to build; depending on the length of your class, you could have each team build all six sets OR have each team build one of the six sets to then share with the rest of the class.

A - HCP and CCP

B - Primitive cubic and CsCl

Colored Note Cards as a Quick and Cheap Substitute for Clickers

Submitted by Chris Bradley / Mount St. Mary's University on Tue, 07/17/2012 - 10:23
Description

For many years I have resisted using clickers, mainly because at our university there is no standard universal clicker. I wanted to keep student costs as low as possible but also desired the type of live feedback during a lecture that clicker questions can provide. In both my general chem. (200-300 students) and upper division courses (50-75 students), I now pass out 4 or 5 colored notecards on the first day of class and make sure everyone has one of each color.