Advanced Inorganic Chemistry

Submitted by Darren Achey / Kutztown University on Tue, 09/11/2018 - 14:50
Description

The application of physio-chemical principles to understanding structure and reactivity in main group and transition elements. Valence Bond, Crystal Field, VSEPR, and LCAO-MO will be applied to describe the bonding in coordination compounds. Organometallic and bio-inorganic chemistry will be treated, as will boranes, cluster and ring systems, and inorganic polymers. The laboratory will involve both synthetic and analytic techniques and interpretation of results.

General Chemistry Collection for New Faculty

Submitted by Kari Stone / Lewis University on Thu, 07/26/2018 - 14:42

VIPEr to the rescue!

The first year as a faculty member is extremely stressful and getting through each class day to day is a challenge. This collection was developed with new faculty teaching general chemistry in mind pulling together resources on the VIPEr site to refer back to as the semester drags along. There are some nice in-class activities, lab experiments, literature discussions, and problem sets for use in the general chemistry course. There are also some nice videos and graphics that could be used to spark interest in your students.

Foundations of Inorganic Chemistry

Submitted by Sabrina Sobel / Hofstra University on Mon, 01/22/2018 - 14:58
Description

Fundamental principles of inorganic chemistry, including: states of matter; modern atomic and bonding theory; mass and energy relationships in chemical reactions; equilibria; acids and bases; descriptive inorganic chemistry; solid state structure; and electrochemistry. Periodic properties of the elements and their compounds are discussed (3 hours lecture, 1 hour recitation). 

Inorganic and Materials Chemistry

Submitted by Karen S. Brewer / Hamilton College on Mon, 01/15/2018 - 17:12
Description

Topics in inorganic chemistry, including periodicity and descriptive chemistry of the elements, electrochemistry, transition metal coordination chemistry, and the structure and properties of solid state materials. Laboratories emphasize synthesis and characterization of inorganic coordination compounds, electrochemistry, and inorganic materials. This course satisfies the second semester of a one-year General Chemistry requirement for post-graduate Health Professions programs. Prerequisite, 120 or 125. Three hours of lecture and three hours of laboratory.

Inorganic Chemistry I with Laboratory

Submitted by Chip Nataro / Lafayette College on Mon, 01/15/2018 - 12:17
Description

Introduces the theories of atomic structure and bonding in main-group and solid-state compounds. Common techniques for characterizing inorganic compounds such as NMR, IR, and mass spectrometry are discussed. Descriptive chemistry of main group elements is examined. Conductivity, magnetism, superconductivity, and an introduction to bioinorganic chemistry are additional topics in the course. In lieu of the laboratory, students have a project on a topic of their choice. Serves as an advanced chemistry elective for biochemistry majors.

Inorganic Chemistry I

Submitted by Chip Nataro / Lafayette College on Mon, 01/15/2018 - 11:32
Description

Introduces the theories of atomic structure and bonding in main-group and solid-state compounds. Common techniques for characterizing inorganic compounds such as NMR, IR, and mass spectrometry are discussed. Descriptive chemistry of main group elements is examined. Conductivity, magnetism, superconductivity, and an introduction to bioinorganic chemistry are additional topics in the course. In lieu of the laboratory, students have a project on a topic of their choice. Serves as an advanced chemistry elective for biochemistry majors.

Advanced Inorganic Chemistry

Submitted by Anne Bentley / Lewis & Clark College on Wed, 01/10/2018 - 18:20
Description

Modern concepts of inorganic and transition-metal chemistry
with emphasis on bonding, structure, thermodynamics, kinetics and
mechanisms, and periodic and family relationships. Atomic structure,
theories of bonding, symmetry, molecular shapes (point groups), crystal
geometries, acid-base theories, survey of familiar elements, boron
hydrides, solid-state materials, nomenclature, crystal field theory,
molecular orbital theory, isomerism, geometries, magnetic and optical
phenomena, spectra, synthetic methods, organometallic compounds,

Investigating the toxicities of metals and identifying cadmium centers in metallothioneins

Submitted by Chantal Stieber / Cal Poly Pomona on Sat, 06/03/2017 - 14:43
Description

This activity was designed as an in-class group activity, in which students begin by using basic principles to predict relative toxicities and roles of metals in biological systems. Students then learn about the structures of metallothioneins using information from the protein data bank (PDB) and 113Cd NMR data. By the end of the activity, students will have analyzed data to identify and determine bonding models and coordination sites for multiple cadmium centers in metallothioneins. It is based on recent literature, but does not require students to have read the papers before class.