VIPEr Fellows 2019 Workshop Favorites
During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
Introduction to foundational concepts in inorganic chemistry with emphasis on atomic structure, bonding, and reactivity. Topics will include nuclear chemistry, quantum mechanics, periodic trends, covalent bonding, ionic bonding, metallic bonding, coordinate covalent bonding, acid-base chemistry, electrochemistry, and thermodynamics.
This course is a survey of the chemistry of the inorganic elements focusing on the relationship between electronic structure, physical properties, and reactivity across the periodic table. Topics to be covered include: atomic structure, chemical bonding, group theory, spectroscopy, crystal field theory, coordination chemistry, organometallic chemistry and catalysis, and bioinorganic chemistry. Prerequisites: Successful completion of CH120, CH121, (with a C- or better) and CH 301 (suggested)
Course Description: An overview course covering the fundamental principles and theories of inorganic chemistry, with emphasis on the chemistry of d-block elements. Included topics are molecular structure, electronic structure and spectra, bonding descriptions and reaction mechanisms of coordination complexes along with an introduction to organometallic compounds of d-block elements and an introduction to molecular symmetry and point groups.
Structure and bonding in inorganic systems are the general subjects of this course. Both main group and transition metal chemistry are discussed.
This lecture course will introduce students to the interdependence of chemical bonding, spectroscopic characteristics, and reactivity properties of coordination compounds and complexes using the fundamental concept of symmetry. After reviewing atomic structure, the chemical bond, and molecular structure, the principles of coordination chemistry will be introduced. A basic familiarity with symmetry will be formalized by an introduction to the elements of symmetry and group theory. The students will use symmetry and group theory approaches to understand central atom hybridization, ligand
I have had some students in class have a hard time identifying colors (flame tests, solution color, acid-base indicators, etc.) because of a visual impairment. There are many cell-phone apps that are helpful in aiding these students. "Pixel Picker" allows the students to load a picture from a device (cell phone, ipad). This is helpful because students are now dealing with a "frozen" image. Moving the cross-hair to different parts of the picture changes the R-G-B values. The "Color Blind Pal" app uses a more qualitative approach.
Introduces students to a broad overview of modern inorganic chemistry. Included are considerations of molecular symmetry and group theory, bonding and molecular orbital theory, structures and reactivities of coordination compounds, organometallic chemistry, catalysis and transition metal clusters. Laboratory experiences will include the measurement of several important features of coordination compounds, such as their electronic spectra and paramagnetism, as well as the synthesis and characterization of organometallic compounds.
Catalog Description: Concepts and models in inorganic chemistry with emphasis on atomic structure and bonding, molecular orbital theory, material science, and descriptive inorganic chemistry including biological and environmental applications.