Inorganic Challenges

Submitted by Patrick Holland / Yale University on Tue, 03/10/2009 - 15:39
Description

The Interactive Inorganic Challenge Forum is a resource for inorganic chemistry teachers who want to incorporate team learning questions (“Challenges”) into an upper level undergraduate inorganic course. Through this site, teachers can exchange their ideas with others who have used inorganic chemistry Challenges. As a result, students benefit from field-tested group questions.

Polarizing Power of Cations

Submitted by Nancy Williams / Scripps College, Pitzer College, Claremont McKenna College on Tue, 02/24/2009 - 20:08
Description

This is a handout which I use in an advanced general chemistry course, but which could be used in an inorganic course as well. It is a mini-periodic table with common cations and their charge to size ratios expressed as Q/r2, where Q is in integer charges (+1, +2), and r is in Angstroms. Conveniently, Na+ is an easy to remember 1.0, and Al3+ and Be2+ are easy to remember values of 10. This corresponds to the polarizing power of these ions, and is a crude proxy for how covalent their interactions with a given anion tend to be.

House: Inorganic Chemistry

Submitted by Adam Johnson / Harvey Mudd College on Mon, 01/12/2009 - 15:35
Description

House (Inorganic chemistry):  The book is divided into 5 parts:  first, an introductory section on atomic structure, symmetry, and bonding; second, ionic bonding and solids; third, acids, bases and nonaqueous solvents; fourth, descriptive chemistry; and fifth, coordination chemistry.  The first three sections are short, 2-4 chapters each, while the descriptive section (five chapters) and coordination chemistry section (seven chapters covering ligand field theory, spectroscopy, synthesis and reaction chemistry, organometallics, and bioinorganic chemistry.) are longer.  Each chapter includes

Putting electrochemistry to use: Design of new lithium-ion battery anodes

Submitted by Maggie Geselbracht / Reed College on Fri, 11/28/2008 - 20:55
Description
This learning object focuses on a discussion of a recent paper that highlights the application of electrochemistry in inorganic materials chemistry: “Direct Electrodeposition of Cu2Sb for Lithium-Ion Battery Anodes” by James M. Mosby and Amy L. Prieto, J. Am. Chem. Soc.

Speed-Dating, Chemistry Style: HSAB Theory

Submitted by Patrick Holland / Yale University on Mon, 07/28/2008 - 10:24
Description

This is an interactive Challenge in which students have to find others in the room with whom they "match" as a hard or soft acid or base. It brings to life the way inorganic chemists think about HSAB. Inorganic Challenges are exercises designed to be solved by a small group of students. Some Challenges practice a problem-solving algorithm, some reinforce important concepts, and some involve creativity or games.

Werner's Nobel Prize Address

Submitted by Maggie Geselbracht / Reed College on Wed, 04/02/2008 - 02:54
Description
Alfred Werner's Nobel prize address in 1913 offers a unique historical view on the development of coordination chemistry from the expert. With a bit of "translation" to modern terminology, this paper is very accessible to most students. Discussion of the address provides a useful introduction to coordination complexes including structure, isomers, and ligand substitution reactions.

Miessler and Tarr: Inorganic Chemistry, 3rd. Ed

Submitted by Nancy Williams / Scripps College, Pitzer College, Claremont McKenna College on Fri, 03/28/2008 - 16:44
Description

Miessler and Tarr is an inorganic textbook which is is best suited to an upper-division one-semester inorganic course, though there is more material than can be covered in a single semester, so some choice of topics is necessary.  It is very well suited for a course oriented around structure, bonding, and reaction chemistry of transition metal compounds, but is very limited in its treatment of solids, main-group, descriptive chemistry, and bioinorganic.  Pchem would be helpful but is not necessary.  In particular, the treatment of MO theory is very in-depth.  The quality of end-of chapter p

Housecroft and Sharpe: Inorganic Chemistry, 3ed

Submitted by Lori Watson / Earlham College on Wed, 03/26/2008 - 20:01
Description

Housecroft and Sharpe (Inorganic Chemistry, 3ed): This is a comprehensive inorganic textbook designed primarily for students at the Junior/Senior level. P-Chem would not be needed as a prerequisite for this text, but would be helpful. It includes both theoretical and descriptive material along with special topics, enough for a two semester course though it is easily adaptable to a one-semester "advanced inorganic" course by choosing only some topics. It is written in a clear and generally readable style and the full-color graphic contribute to student understanding.

What happens when chemical compounds are added to water?

Submitted by Barbara Reisner / James Madison University on Sat, 11/17/2007 - 18:38
Description

It’s very surprising how little students remember from general chemistry.  This assignment helps students make connections between the macroscopic properties of solutions and what happens at the molecular level.  This activity serves as a bridge between sections on acid-base chemistry and coordination chemistry.

Students are solicited for their models of the behavior of different chemical compounds in water in class and asked to put these models on the board.  We then look at the properties of these solutions (color, acid-base) and refine these models in class.