Inquiry-Based Introduction to Carbonyl Ligands

Submitted by Emily Sylvester / Duquesne University on Mon, 06/27/2016 - 17:20
Description

This in-class worksheet introduces students to the different ways we describe organometallic ligands – bonding, properties, spectroscopy, etc. – using carbon monoxide as an example. It is structured as an inquiry-based activity, where students work together in small groups but check in with the entire class at appropriate intervals. I plan to use this activity with my advanced inorganic students next year.

Determining transition metal oxidation states: Recognizing bond metal-ligand types

Submitted by Brandon Quillian / Georgia Southern University on Mon, 06/27/2016 - 16:43
Description

In this in-class activity, students will determine the formal oxidation state of transition metal complexes by performing bonding type analysis of ligand−metal bonds. This in-class project is intended for those with little background in inorganic chemistry and aims to provide simple methods to calculate the formal charge of transition metals through bond-type analysis. While there are more sophisticated models already available to assign transition metal oxidation states, such as the LXZ (CBC) model, this exercise is intended for students who are coordination chemistry novices.

Student Oral Presentations of a Communication from the Primary Literature

Submitted by Carmen Works / Sonoma State University on Mon, 06/27/2016 - 16:43
Description

In the humanities it is common practice to read a piece of literature and discuss it.  This is also practiced in science and is the purpose of this exercise.  Each student is assigned a communication from the current  literature (inorganic, JACS, organometallics, J. Phys.

Chapter 2--Stanley Organometallics

Submitted by George Stanley / Louisiana State University on Mon, 06/20/2016 - 12:57
Description

Chapter 2 from George Stanley's organometallics course, Lewis Base ligands

 

this chapter covers halides, oxygen and nitrogen donor ligands

The powerpoint slides contain answers to some of the in-class exercises, so those are behind the "faculty only" wall. I share these with students after the class, but not before.

Everyone is more than welcome to edit the materials to suit their own uses, and I would appreciate being notified of any mistakes that are found.


George Stanley Organometallics

Submitted by Adam Johnson / Harvey Mudd College on Fri, 06/10/2016 - 14:53

This is an LO for the collection of organometallics LOs by George Stanley. Adam Johnson is curating the material that was written by George.

For many years, George hosted his organometallics lecture notes, powerpoint slides, and handouts, on his personal website at LSU. He always wanted that material available to the public. Recently, they moved to a CMS and that material is no longer available. Adam is working with George to get the 2016-2017 version of his materials up on VIPEr for everyone to use.

The lecture notes are freely available to all.

Chapter 1--Stanley Organometallics

Submitted by George Stanley / Louisiana State University on Fri, 06/10/2016 - 14:45
Description

chapter 1 of George Stanley's Organometallics course: Introduction, Orbitals, Electron counting

This chapter is an overview of the field, with an emphasis on electron counting

The powerpoint slides contain answers to some of the in-class exercises, so those are behind the "faculty only" wall. I shares these with students after the class, but not before.

everyone is more than welcome to edit the materials to suit their own uses, and I would appreciate being notified of any mistakes that are found.


Ligand effects in titration calorimetry from the Angelici lab

Submitted by Chip Nataro / Lafayette College on Mon, 05/23/2016 - 21:08
Description

This literature discussion focuses on a paper from the Angelici lab that examines the heat of protonation of [CpʹIr(PR3)(CO)] compounds. The compounds presented in the paper provide good introductory examples for electron counting in organometallic compounds. The single carbonyl ligand in these compounds provide an excellent probe to monitor the electron richness at the metal center which is impacted by the electron donor ability of the ligands.

Mix and Match Ligand Group Orbitals and Metal Orbitals

Submitted by samuelson / Indian Institute of Science on Thu, 03/31/2016 - 00:34
Description

Students are often presented with the finished MO correlation diagrams of molecules like bis benzene chromium or ferrocene in classes and in organometallic chemistry text books. This activity helps them match the ligand group orbitals of the two benzene rings with the metal valence orbitals. Their understanding and appreciation of such diagrams is significantly enhanced when they find out how only some matches have the appropriate symmetry requirements.

Working with Catalytic Cycles

Submitted by Matt Whited / Carleton College on Mon, 09/28/2015 - 14:05
Description

Students work in groups to identify relevant steps and intermediates in 3 catalytic cycles, all the while considering bonding (and electron counting) factors.  Following assignment of these steps and intermediate species, the students consider several questions related to catalysis more broadly, particularly the role of each reagent, how to speed up or slow down specific steps, and the importance of regiospecificity in certain steps.