Geometry and Magnetism Worksheet_ Bioinorganic

Submitted by Sheila Smith / University of Michigan- Dearborn on Thu, 06/23/2011 - 14:55
Description

This is an in class exercise that I use to introduce structure and magnetism to a junior/senior level course on bioinorganic chemistry. The class is cross-listed between Chemistry and Biochemistry. All of the students have had general chemistry and organic (with some exposure to MO Theory). Many of the students have also had the sophomore-level inorganic course, which delves extensively into MO theory, and some of the the students have also had the senior-level course on transition metal chemistry which looks deeply at d-orbital splitting.

Generating LGOs and constructing MO diagrams - pencast

Submitted by Adam Johnson / Harvey Mudd College on Wed, 06/15/2011 - 14:26
Description

My technique for constructing MO diagrams is based on (and significantly simplified from) that of Verkade.  While I find it works well in my classroom for my students, they benefit from careful step-by-step instruction of the method through several weeks of in-class exercises.  This LO has links to pencasts where I go through three easy examples that demonstrate the technique, as well has how I handle lone pairs by this method.  As transition metal complexes don’t have stereochemically active lone pairs, they are often easier to deal with than even something seemingly as simple as water!

Constructing MO diagrams

Submitted by Adam Johnson / Harvey Mudd College on Wed, 06/15/2011 - 14:11
Description

I use this in-class exercise after I have taught the students how to construct LGOs using the generator orbital technique.  The previous week, they do an in-class exercise on that topic, and this week, they use the LGOs from the previous week to construct MO diagrams.

Catalysis using functionalized mesoporous silica

Submitted by Randall Hicks / Wheaton College on Wed, 05/25/2011 - 10:30
Description

This paper, while not fundamentally groundbreaking, serves as a nice introduction to the field of mesoporous materials. I like that it covers synthesis, characterization, and an application of the materials. I have used this paper in our senior seminar course as the basis for discussion of this area of chemistry. Discussion questions cover aspects of sol-gel chemistry, powder diffraction, gas adsorption, IR, solid state NMR, UV-Vis, and catalysis.  

Teaching Tanabe-Sugano Diagrams

Submitted by Sheila Smith / University of Michigan- Dearborn on Tue, 05/03/2011 - 11:12
Description

For years, I spent 2-3 days a semester working through Tanabe-Sugano diagrams, their development from terms, their evolution from Orgel diagrams, their analysis to give transition energies (the old ruler- trial and error analysis) and nephalauxetic parameters.  Recently, colleagues in VIPEr convinced me that my time in class could be better spent, but I am not willing to completely give up on Tanabe-Sugano.

19F NMR In-class exercise

Submitted by Sheila Smith / University of Michigan- Dearborn on Mon, 04/04/2011 - 12:27
Description

This is an in class activity to introduce the topic of multinuclear NMR, which is not covered (beyond 13C) in our sophomore level organic course. It is designed to walk the students through the process of predicting NMR spectra, as they learned in sophomore organic chemistry, but for a different I=1/2 nucleus, in this case 19F, which is I=1/2 and 100% abundant. 

 

Communication-style lab reports

Submitted by Rebecca M. Jones / George Mason University on Mon, 03/14/2011 - 15:52
Description

For the past four years, I have required my inorganic students to write short 3-page formal lab reports in the form of communication to the Journal of the American Chemical Society.  This exercise has relieved some of the stress on my students who are writing reports of other science classes and simplified my grading.  Using Jeffrey Kovac's Writing Across the Chemistry Curriculum: An Instructor's Handbook as a starting point, I have developed a rubric to provide qualitative feedback to the stu

Computational Inorganic Chemistry: An Introduction

Submitted by Rebecca M. Jones / George Mason University on Wed, 03/09/2011 - 16:00
Description

The attached lecture provides a brief overview to computational methods and introduces their application to inorganic systems.  Two specific literature examples are included.  I have given this lecture in a senior level advanced inorganic chemistry class for the past 3 years.

Exploring Photographic Chemistry

Submitted by Rebecca M. Jones / George Mason University on Wed, 03/09/2011 - 15:27
Description
This set of experiments is a fun way for students to be experience interesting redox chemistry.  I have taught this series of experiments in my first semester junior level inorganic class for the past 5 years.  In part 1, students create salted paper prints with different binders.  Part 2 involves the synthesis of Prussian blue as cyanotypes are formed on paper and cloth.  In part 3, students design t