Getting to Know the MetalPDB
When teaching my advanced bioinorganic chemistry course, I extensively incorporate structures from Protein Data Bank in both my assignments and classroom discussions and mini-lectures.
When teaching my advanced bioinorganic chemistry course, I extensively incorporate structures from Protein Data Bank in both my assignments and classroom discussions and mini-lectures.
This is a simple in-class activity that asks students to utilize any of the given available online orbital viewers to help them identify atomic orbital overlap and interactions.
The activity is designed to be a literature discussion based on Nicolai Lehnert's Inorganic Chemistry paper, Mechanism of N-N Bond Formation by Transition Metal-Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases. The discussion questions are designed for an advanced level inorganic course.
The associated paper by Lehnert et al. uses DFT to investigate the reaction mechanism whereby a flavodiiron nitric oxide reductase mimic reduces two NO molecules to N2O. While being a rather long and technical paper, it does include several figures that highlight the reaction profile of the 4-step reaction. This LO is designed to help students learn how to recognize and interpret such diagrams, based on free energy in this case. Furthermore, using a simple form of the Arrhenius equation (eq.
This literature discussion is an expansion of a previous LO (https://www.ionicviper.org/literature-discussion/tetrahedral-tellurate) and based on a 2008 Inorganic Chemistry article
This acitivty is a foundation level discussion of the Nicolai Lehnert paper, "Mechanism of N-N Bond Formation by Transition Metal-Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases". Its focus lies in discussing MO theory as it relates to Lewis structures, as well as an analysis of the strucutre of a literature paper.
This activity is designed to relate solid-state structures to the density of materials and then provide a real world example where density is used to design a new method to explore nanotoxicity in human health. Students can learn how to calculate the density of different materials (gold, cerium oxide, and zinc oxide) using basic principles of solid state chemistry and then compare it to the centrifugation method that was developed to evaluate nanoparticle dose rate and agglomeration in solution.
This is a nanochemistry lab I developed for my Junior and Senior level Inorganic Chemistry course. I am NOT a nano/matertials person, but I know how important nanochemistry is and I wanted to make something where students could get an interesting introduction to the area. The first time I ran this lab was also the first time I made gold nanoparticles ever!
We do not have any surface/nano instrumentation here (AFM, SEM/TEM, DLS, etc... we can access them at other universities off-campus but that takes time and scheduling), so that was a key limitation in making this lab.
In honor of Professor Richard Andersen’s 75th birthday, a small group of IONiC leaders submitted a paper to a special issue of
In this literature assignment, students are asked to read an article from the primary literature on a binuclear manganese-peroxo complex that is similar to species proposed to be involved in photosynthetic water splitting and DNA biosynthesis. The assignment contains 25 questions that are intended to guide students through the article and help them extract important information about the work. The completed questions are then used as the basis for an in-class discussion of model complexes, which leads to a more advanced discussion on the topic.