SliThEr #34: Libretext as a Platform

Submitted by Chip Nataro / Lafayette College on Tue, 06/21/2022 - 15:47
Description

Delmar Larsen (UC - Davis) and Kathryn Haas (Duke) describe the Libretext project with a particular focus on needs within the Inorganic Chemistry curriculum.

SALC: An Orbital Arrangement Game

Submitted by Madalyn Radlauer / San Jose State University on Wed, 06/15/2022 - 00:13
Description

We have developed a tabletop game to help students get comfortable with symmetry adapted linear combinations of orbitals (SALCs), a conceptual model used to understand bonding in molecular orbital theory. We have found that students often get anxious about SALCs and miss not only the visual connections to symmetry, but also the fun! This LO includes information about the game, files you can use to print your own copy as well as a link in case you want to purchase a copy, and an example of how it might be incorporated into the classroom. 

Bioinorganic Chemistry

Submitted by KVH / Harvey Mudd College on Wed, 06/08/2022 - 13:46
Description

Metals in biological systems can perform a wide range of reactions with exquisite efficiency and selectivity. In contrast, performing many of the same reactions in the lab requires harsh conditions and/or rare, expensive materials.

Inorganic Chemistry

Submitted by Emma Downs / Fitchburg State University on Tue, 06/07/2022 - 12:52
Description

The course will cover the elements of the periodic table that are omitted in general and organic chemistry, mainly the transition (d-block) metals.

Metal/Ligand Proton Tautomerism Facilitates Dinuclear H2 Reductive Elimination (Kuo)

Submitted by Kyle Grice / DePaul University on Tue, 06/07/2022 - 11:11
Description

This LO was developed in 2022 as part of a collection celebrating the “Out in Inorganic Chemistry: A Celebration of LGBTQIAPN+ Inorganic Chemists” Inorganic Chemistry special issue. Check out the editorial and issue here: Editorial  Special Issue

The questions below refer to the following 2020 publication by Dr. Jonathan Kuo and Dr. Karen Goldberg

Metal-Ligand Multiple Bonds: The Discovery of “Double Nickel” (Hillhouse)

Submitted by Anthony L. Fernandez / Merrimack College on Wed, 06/01/2022 - 00:52
Description

This LO focuses on creating complexes with multiple bonds between late transition metals and nitrogen. The questions will guide students through Mindiola and Hillhouse's communication that details the synthesis and investigation of three-coordinate terminal amido and imido complexes of nickel. This communication is significant because it describes the synthesis and structural characterization of what became known as his "double nickel" complex, which contains a Ni-N double bond.  

Literature 3-2-1

Submitted by James F. Dunne / Central College on Sun, 05/22/2022 - 14:24
Description

This is a general assignment given prior to discussing a paper in class.  Students are asked to read a particular literature paper, and then fill out the template giving the citation information of the paper and: three (3) new things they learned from the paper, two (2) questions that reading the paper raised for them or left unanswered, and one (1) reference cited by the paper that the student thinks is worth reading and why.  The assignment helps seed the discussion prior to class, and gives the instructor some information about specific details to discuss to fill in gaps in the students'

Mechanistic Study of Competitive sp3-sp3 and sp2-sp3 Carbon-Carbon Reductive Elimination from a Platinum(IV) Center and the Isolation of a C-C Agostic Complex (Williams)

Submitted by Shirley Lin / United States Naval Academy on Fri, 05/20/2022 - 08:09
Description

This literature discussion focuses on a J. Am. Chem. Soc. communication that describes a series of Pt complexes that exhibit competitive reductive elimination reactions to form either an sp2-sp3 bond or an sp3-sp3 bond. One of the complexes also contains a C-C agostic interaction with the metal. The questions are written to be addressed by students in a foundation-level inorganic course.

Inorganic Chemistry

Submitted by Martin McPhail / University of West Georgia on Thu, 05/19/2022 - 15:19
Description

The wave nature of electrons is applied to atomic structure and periodic trends. Inter and intramolecular bonding models are used to interpret the chemical and physical properties of various materials, from simplistic diatomic molecules to structurally complex molecular and ionic systems.