Materials Chemistry

Submitted by Deborah Polvani / Washington & Jefferson College on Mon, 06/12/2023 - 09:33
Description

Materials Chemistry will explore many of the fundamental relationships between a material’s chemical structure and the subsequent interesting and useful properties that result.  In order for advances in electronic, magnetic, optical, and other niche applications to be made, an understanding of the structure-property relationship in these materials is crucial.  This course will emphasize inorganic systems, and topics will include descriptions of various modern inorganic solid-s

Advanced Inorganic Chemistry

Submitted by Deborah Polvani / Washington & Jefferson College on Mon, 06/12/2023 - 09:18
Description

This course will explore many of the fundamental principles of inorganic chemistry, with significant emphasis on group theory, molecular orbital theory, angular overlap theory, coordination chemistry, organometallic chemistry, and bio-inorganic chemistry. Specific topics will vary, but will generally include coverage of atomic structure, simple bonding theory, donor-acceptor chemistry, the crystalline solid state, coordination compounds and isomerism, electronic and infrared spectroscopy applied to inorganic complexes, substitution mechanisms, and catalysis.

Atomic Orbital Representations and the Orbitron

Submitted by Andrea Van Duzor / Chicago State University on Fri, 06/09/2023 - 16:37
Description

This POGIL based activity is intended to review general chemistry concepts of atomic structure and to further those concepts with additional attention to d orbitals and radial distribution graphs.  The primary model in the activity is The Orbitron website (https://winter.group.shef.ac.uk/orbitron/) with students examining the isosurface and radial distributions for a variety of orbitals.

A Thousand Manipulatable Inorganic Electron-Counting Problems from Crystallography

Submitted by George Lisensky / Beloit College on Wed, 03/01/2023 - 14:40
Description

One thousand interactive organometallic and coordination complexes have been selected and prepared for practice and discovery in electron counting problems. The structures can be displayed and manipulated without requiring software installation using a web browser with JavaScript and JSmol.

SLiThEr #41: Peer Review in the Classroom

Submitted by Kyle Grice / DePaul University on Thu, 11/17/2022 - 14:57
Description

Dr. Rebecca Jones from Geoge Mason University presented and led a discussion on peer review in chemistry. The Youtube Video is shown below and linked as well. 

Publications Describing Educational Games in the Chemistry Classroom

Submitted by Brad Wile / Ohio Northern University on Sun, 09/04/2022 - 11:27
Description

A sampling of the peer-reviewed literature describing the use of educational games in the undergraduate chemistry classroom. Given that well over 200 publications exist on this topic, this is intended to whet one's appetite for chemistry games rather than be an exhaustive list.

 

Inorganic Chemistry I

Submitted by Rudy Luck / Michigan Technological University on Wed, 08/17/2022 - 15:52
Description

Descriptive chemistry of the main group elements with some emphasis on the non-metals.  Transition metal compounds: aspects of bonding, spectra, and reactivity; complexes of n-acceptor ligands; organometallic compounds and their role in catalysis; metals in biological systems; preparative, analytical, and instrumental techniques. 

Relating Ligand Field Theory to Nickel Complex Color

Submitted by Joya Cooley / California State University, Fullerton on Tue, 06/28/2022 - 14:55
Description

This In-Class Activity is meant to follow up discussions of ligand field theory toward the end of MO theory including the effects of sigma donors, pi donors, and pi acceptors, and how it relates to absorption spectra and observed color of some transition metal complexes. Students have learned crystal field theory and the effects of geometry/symmetry on ∆, then we extend to LFT and how the chemistries of different ligands affect ∆.

Lattice Structures Visualizer

Submitted by Stephanie Poland / Rose-Hulman Institute of Technology on Sun, 06/26/2022 - 14:33
Description

This Lattice Structures Visualizer is useful to see simple cubic, body-centered cubic, face-centered cubic, NaCl, CaF2, and hcp lattice structures. You can add atoms/ions layer by layer, break them apart into individual unit cells, and perform other modifications to better observe the structures without physical models. I use this routinely in my general and inorganic chemistry classes.

VIPEr Fellows 2022 Workshop Favorites

Submitted by Barbara Reisner / James Madison University on Sun, 06/26/2022 - 14:31

The second cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.