Inorganic Chemistry I with Laboratory

Submitted by Chip Nataro / Lafayette College on Mon, 01/15/2018 - 12:17
Description

Introduces the theories of atomic structure and bonding in main-group and solid-state compounds. Common techniques for characterizing inorganic compounds such as NMR, IR, and mass spectrometry are discussed. Descriptive chemistry of main group elements is examined. Conductivity, magnetism, superconductivity, and an introduction to bioinorganic chemistry are additional topics in the course. In lieu of the laboratory, students have a project on a topic of their choice. Serves as an advanced chemistry elective for biochemistry majors.

Inorganic Chemistry I

Submitted by Chip Nataro / Lafayette College on Mon, 01/15/2018 - 11:32
Description

Introduces the theories of atomic structure and bonding in main-group and solid-state compounds. Common techniques for characterizing inorganic compounds such as NMR, IR, and mass spectrometry are discussed. Descriptive chemistry of main group elements is examined. Conductivity, magnetism, superconductivity, and an introduction to bioinorganic chemistry are additional topics in the course. In lieu of the laboratory, students have a project on a topic of their choice. Serves as an advanced chemistry elective for biochemistry majors.

Advanced Inorganic Chemistry

Submitted by Anne Bentley / Lewis & Clark College on Wed, 01/10/2018 - 18:20
Description

Modern concepts of inorganic and transition-metal chemistry
with emphasis on bonding, structure, thermodynamics, kinetics and
mechanisms, and periodic and family relationships. Atomic structure,
theories of bonding, symmetry, molecular shapes (point groups), crystal
geometries, acid-base theories, survey of familiar elements, boron
hydrides, solid-state materials, nomenclature, crystal field theory,
molecular orbital theory, isomerism, geometries, magnetic and optical
phenomena, spectra, synthetic methods, organometallic compounds,

Inorganic Chemistry

Submitted by Lori Watson / Earlham College on Thu, 01/04/2018 - 11:27
Description

Inorganic chemists study the entire periodic table (even carbon—as long as it’s bound to a metal!) and are interested in the structure and reactivity of a wide variety of complexes.  We will spend the first third of the course learning some “tools” and then will apply them to a variety of current topics in inorganic chemistry (bioinorganic chemistry, solid state materials, catalysis, nuclear chemistry, and more!).