Inorganic Chemistry

Submitted by Leon / Stonehill College on Mon, 06/03/2019 - 11:32
Description

This course covers fundamentals of central topics in inorganic chemistry from historical to modern-day perspectives.  Topics include: coordination compounds (history, structure, bonding theories, reactivity, applications); solid state chemistry (crystals, lattices, radius ratio rule, defect structures, silicates & other minerals); and descriptive chemistry of the elements.

Hyperphysics

Submitted by Barbara Reisner / James Madison University on Sun, 06/02/2019 - 16:24
Description

The hyperphysics website uses concept maps as a way to organize physics content knowledge: http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html (condensed matter). I cam across this website while doing a review of the literature on what students know about semiconductors. There are nice explanations of many of the topics associated with semiconductors and they are organized in an unique way.

Inorganic Chemistry

Submitted by Anthony L. Fernandez / Merrimack College on Wed, 05/22/2019 - 10:42
Description

This course introduces the chemistry of transition metals and main group elements. Topics include theories of bonding, kinetics and mechanisms of reactions of transition metal complexes, oxidation-reduction reactions, hard-soft acid-base theory, and solid-state chemistry. Applications of inorganic chemistry to other areas (organic, analytical, and physical chemistry, as well as biology and biochemistry) are highlighted throughout the course. The laboratory portion of the course involves the synthesis and spectroscopic investigation of inorganic complexes.

Inorganic Chemistry

Submitted by Gary Guillet / Furman University on Thu, 04/25/2019 - 16:02
Description

Introduces students to a broad overview of modern inorganic chemistry. Included are considerations of molecular symmetry and group theory, bonding and molecular orbital theory, structures and reactivities of coordination compounds, organometallic chemistry, catalysis and transition metal clusters. Laboratory experiences will include the measurement of several important features of coordination compounds, such as their electronic spectra and paramagnetism, as well as the synthesis and characterization of organometallic compounds.

Inorganic Chemistry

Submitted by John Lee / University of Tennessee Chattanooga on Wed, 02/13/2019 - 14:25
Description

Catalog Description:  Concepts and models in inorganic chemistry with emphasis on atomic structure and bonding, molecular orbital theory, material science, and descriptive inorganic chemistry including biological and environmental applications.

Inorganic Chemistry

Submitted by Steven Girard / University of Wisconsin - Whitewater on Fri, 02/01/2019 - 11:58
Description

This course is composed of two components:

A. Lecture:

Inorganic Chemistry

Submitted by James F. Dunne / Central College on Tue, 01/29/2019 - 16:16
Description

This course is an introduction to the field of inorganic chemistry.  The student is expected to be well-versed in the material covered in general chemistry, as this will serve as the foundation and launching point for the material to be covered this semester. The course will begin by examining the properties of the elements, and expand outward to consider chemical bonding and the electronic factors that govern metal reactivity.  These factors include acid-base theory, thermodynamics, electrochemistry and redox, and coordination chemistry.

Inorganic Chemistry

Submitted by Kari Young / Centre College on Mon, 01/28/2019 - 11:23
Description

A study of the chemistry of inorganic compounds, including the principles of covalent and ionic bonding, symmetry, periodic properties, metallic bonding, acid-base theories, coordination chemistry, inorganic reaction mechanisms, and selected topics in descriptive inorganic chemistry. Laboratory work is required.