National ACS Award Winners 2022 LO Collection

This collection of learning objects was created to celebrate the National ACS Award Winners 2022 who are members of the Division of Inorganic Chemistry. The list of award winners is shown below. 

Shirley Lin / United States Naval Academy Sat, 03/12/2022 - 07:01

Catalytic dechlorination of PVC

Submitted by Chip Nataro / Lafayette College on Wed, 07/24/2024 - 08:18
Description

This LO was inspired by a talk that Megan Fieser gave at the 2024 Organometallic Chemistry Gordon Research Conference. It was an excellent talk with some really interesting chemistry. Wanting something with practical application for my class focused on organometallic chemistry, I looked at one of her 'older' papers and found this really interesting rhodium catalyst. In the main paper for this LO (Mater. Horiz. 202310, 2047), the catalytic dechlorination of poly(vinyl chloride) (PVC) using a rhodium pincer complex is described.

Visible Light-Absorbing Ruthenium Complexes: Choosing a Final Project in Inorganic Chemistry Laboratory from Two Real-World Applications

Submitted by Dr. Robert Perkins / Saint Louis University on Tue, 02/27/2024 - 11:13
Description

Laboratory Project Summary:

Students in an upper level Inorganic Chemistry lab course are given a choice between two final lab projects.  Both projects involve the synthesis of visible light-absorbing ruthenium complexes, however the subsequent application of these complexes correspond to different subfields within inorganic chemistry.  This feature allows them to pursue a project that continues to develop their synthetic, data-analysis, and writing skills while pursuing one that most closely aligns with their interests.

Pre-Equilibria Reaction Mechanism as a Strategy to Enhance Rate and Lower Overpotential in Electrocatalysis (Berben)
Description

This literature Discussion LO was created for the 2024 ACS Inorganic Chemistry Award Winners Collection.  Professor Louise A.

Rachel E. Siegel / University of California, Davis Mon, 02/26/2024 - 13:40
Inorganic Chemistry Laboratory
Description

Students perform weekly laboratory experiments to explore and apply concepts covered in the lecture
component of the course.

Cody Webb Jr / Hartwick College Wed, 06/14/2023 - 02:02
Inorganic Chemistry I
Description

This course focuses on the chemistry of the elements, including electronic structure, bonding and
molecular structure, ionic solids, coordination compounds, the origins of the elements, and the descriptive
chemistry of the elements. Topics also include inorganic synthesis, materials science, industrial chemistry,
and an introduction to bioinorganic chemistry.

Cody Webb Jr / Hartwick College Wed, 06/14/2023 - 01:57

Phosphate Reduction by Mechanochemistry (Cummins)

Submitted by Kyle Grice / DePaul University on Fri, 01/13/2023 - 11:15
Description

This Literature Discussion LO was created for the ACS Inorganic Chemistry Award Winners. Dr. Kit Cummins was the recipient of the 2023 Frederick Hawthorne Award in Main Group Inorganic Chemistry. This LO is based on a recent paper from the group of Dr. Cummins, entitled "Sustainable Production of Reduced Phosphorus Compounds: Mechanochemical Hydride Phosphorylation Using Condensed Phosphates as a Route to Phosphite", published in ACS Central Science20228, 332-339.

Inorganic Chemistry I

Submitted by Rudy Luck / Michigan Technological University on Wed, 08/17/2022 - 15:52
Description

Descriptive chemistry of the main group elements with some emphasis on the non-metals.  Transition metal compounds: aspects of bonding, spectra, and reactivity; complexes of n-acceptor ligands; organometallic compounds and their role in catalysis; metals in biological systems; preparative, analytical, and instrumental techniques. 

The Potential and Cost of Lithium-Ion Batteries
Description

These slides were originally developed as a part of an Earth Week presentation for a general audience, but can also be used as part of a general chemistry course or any course with electrochemistry. They provide a modern context and relevance to how lithium-ion batteries are produced and function. 

Michael Drummond / Saint Mary's College Thu, 08/04/2022 - 14:19