National ACS Award Winners 2022 LO Collection
This collection of learning objects was created to celebrate the National ACS Award Winners 2022 who are members of the Division of Inorganic Chemistry. The list of award winners is shown below.
This collection of learning objects was created to celebrate the National ACS Award Winners 2022 who are members of the Division of Inorganic Chemistry. The list of award winners is shown below.
A collection of all of the IONiC VIPEr SLiThErs (Supporting Learning with Interactive Teaching: a Hosted, Engaging Roundtable). These events are short presentations on a topic followed by a period of discussion between the presenter and live participants. Each of these events is recorded and posted to the IONiC VIPEr YouTube Channel.
This learning object (LO) focuses on a recent JACS paper (J. Am. Chem. Soc. 2022, 144, 23053 -23060), which explores the chemistry of EuII-based contrast agents.
Students perform weekly laboratory experiments to explore and apply concepts covered in the lecture
component of the course.
This course focuses on the chemistry of the elements, including electronic structure, bonding and
molecular structure, ionic solids, coordination compounds, the origins of the elements, and the descriptive
chemistry of the elements. Topics also include inorganic synthesis, materials science, industrial chemistry,
and an introduction to bioinorganic chemistry.
This literature discussion focuses on a 2022 Nature Comm paper looking at the reasons behind the pyramidal structures of tri-coordinate f-element complexes. There is plenty to discuss in terms of bonding and coordination geometries in metal complexes, and the effects of pressure on coordination geometry.
Patrick Barber (The University of West Florida) demonstrates strategies to teach f-block chemistry to undergraduates.
This literature discussion is based on a 2022 Science paper describing a series of dilanthanide complexes with exceptional magnetic properties due to the presence of metal-metal bonding. These molecules are the first reported species to feature direct bonding between two lanthanides! The paper contains ample material for discussion of molecular symmetry and bonding, oxidation states and electron configurations, and magnetism. The handout includes a description, glossary, discussion questions, and pre-class worksheet.
This course (CHM 599) offers a brief introduction to the study of Nuclear Chemistry, one of the key areas of chemistry. Success in this course requires mastery of chemical vocabulary, principles, and concepts as stated in the degree program’s learning outcomes. In CHM 599, students learn how nucleons interact within the nucleus, half-lives, decay pathways and mechanisms, and nuclear cross-sections and understand the importance of the sub-atomic particles in the nucleus.