Geochronology: radiocarbon dating

Submitted by mike knapp / UMASS on Sat, 06/25/2011 - 10:59
Description

This is written for a freshman seminar course, "Nuclear Chemistry and Medicine," open to all majors.  It meets once per week for one hour, and is meant to facilitate the transition into college for first-year students by providing an informal educational experience. It should be adaptable to a lecture-format course, and I will try to do this for my Junior-year Inorganic Chemistry. 

Communication-style lab reports

Submitted by Rebecca M. Jones / George Mason University on Mon, 03/14/2011 - 15:52
Description

For the past four years, I have required my inorganic students to write short 3-page formal lab reports in the form of communication to the Journal of the American Chemical Society.  This exercise has relieved some of the stress on my students who are writing reports of other science classes and simplified my grading.  Using Jeffrey Kovac's Writing Across the Chemistry Curriculum: An Instructor's Handbook as a starting point, I have developed a rubric to provide qualitative feedback to the stu

The History of the 18-Electron Rule

Submitted by Sibrina Collins / College of Arts and Sciences at Lawrence Technological University on Sat, 01/22/2011 - 14:58
Description

This learning object focuses on fundamental concepts of organometallic chemistry. I use an article published in the Journal of Chemical Education (Jensen, W.B. "The Origin of the 18-Electron Rule," J. Chem. Educ.

Student Literature-Based Organometallic Lecture

Submitted by Jeffrey Rood / Elizabethtown College on Mon, 01/03/2011 - 14:42
Description
I taught an advanced inorganic chemistry course for the first time this past fall. I focused strictly on organometallic chemistry and we used Spessard and Miessler's book. Because this book is focused on transition metal organometallics, I wanted the students to appreciate some of the organometallic chemistry of the s- and p-block (and zinc). Students worked in pairs (the class size was 12) and had most of the semester to research the literature and develop a 40-50 minute lecture. I also had them develop homework questions and an in class activity to help engage the other students.

First Isolation of the AsP3 Molecule

Submitted by Anne Bentley / Lewis & Clark College on Fri, 09/03/2010 - 13:47
Description

Early in 2009, Christopher Cummins’ group at MIT reported (in Science) the synthesis of AsP3, a compound that had never been isolated at room temperature.  Later that year, a full article was published in JACS comparing the properties and reactivity of AsP3 to those of its molecular cousins, P4 and As4.  The longer article is full of possibilities for discussion in inorganic chemistry courses, with topics including periodic trends, NMR, vibrational spectroscopy, electrochemistry, molecular orbital theory, and coordination chemistry.

Introducing Inorganic Chemistry - First Day Activities

Submitted by Barbara Reisner / James Madison University on Tue, 08/31/2010 - 15:53
Description

Every time I teach inorganic, I always ask myself the question: “What’s the best way to motivate the course and get the students excited?” A long time ago, I decided it’s important to start with some music. (Until last year, Tom Lehrer’s The Elements was my favorite. As a TMBG fan, I’ve swiched to Meet the Elements.)

Towards "Personalized Solar Energy": An Inexpensive Oxygen-Evolving Catalyst

Submitted by Anne Bentley / Lewis & Clark College on Fri, 08/27/2010 - 15:54
Description

In the two years since this article was published, it has jump-started a large amount of research in the area of cobalt-based catalysts for solar water splitting.  The paper describes the electrochemical synthesis and oxygen-evolution capabilities of a Co-phosphate catalyst under very mild conditions.  The paper can stimulate discussion of many topics found in the inorganic curriculum, including electrochemistry, semiconductor chemistry, transition metal ion complex kinetic trends, and solid state and electrochemical characterization techniques.

12 Slides About African American Contributions to the Chemical Sciences

Submitted by Sibrina Collins / College of Arts and Sciences at Lawrence Technological University on Wed, 07/21/2010 - 23:53
Description

This presentation provides a brief overview of the contributions of five AfricanAmerican chemists, including two inorganic chemists. George Washington Carver is quite often themost celebrated African American chemist (soil chemist), but he is only one individual! There are many other African Americans that have made important and significant contributions to the chemical sciences. The profiles include inorganic chemists, namely, Professor Gregory H. Robinson, University of Georgia and Dr. Novella Bridges, Pacific Northwest National Laboratory (PNNL).